Zobrazeno 1 - 10
of 961
pro vyhledávání: '"O Tokunaga"'
Autor:
Shinzo BANNAI1, Hiro-o TOKUNAGA2
Publikováno v:
Proceedings of the Japan Academy, Series A: Mathematical Sciences. Feb2020, Vol. 96 Issue 2, p18-21. 4p.
Autor:
Ai, Takahashi, Hiro-o, Tokunaga
Publikováno v:
Commentarii mathematici Universitatis Sancti Pauli = Rikkyo Daigaku sugaku zasshi. 70:11-27
Autor:
Ai TAKAHASHI, Hiro-o TOKUNAGA
Publikováno v:
Hokkaido Mathematical Journal. 51
Autor:
Hiro-o Tokunaga, Shinzo Bannai
Publikováno v:
Journal of Number Theory. 221:174-189
Let φ : S → C be an elliptic surface over a smooth curve C with a section O. We denote its generic fiber by E S which can be considered as an elliptic curve over C ( C ) . For a divisor D on S, not contained in fibers of φ, we canonically associa
There is a close relationship between the embedded topology of complex plane curves and the (group-theoretic) arithmetic of elliptic curves. In a recent paper, we studied the topology of some arrangements of curves which include a special smooth comp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d369391aac506bf215c02c9929a2615
http://arxiv.org/abs/2005.12673
http://arxiv.org/abs/2005.12673
Publikováno v:
Hokkaido Math. J. 49, no. 1 (2020), 87-108
In this paper, we continue the study of the relation between rational points of rational elliptic surfaces and the topology of plane curves. As an application, we give first examples of Zariski pairs of cubic-line arrangements that do not involve inf
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8686c64ed2582740bc7462df25d8e745
https://projecteuclid.org/euclid.hokmj/1591085013
https://projecteuclid.org/euclid.hokmj/1591085013
Autor:
Hiro-o Tokunaga, Shinzo Bannai
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 96, no. 2 (2020), 18-21
In this paper, we study the geometry of two-torsion points of elliptic curves in order to distinguish the embedded topology of reducible plane curves consisting of a smooth cubic and its tangent lines. As a result, we obtain a new family of Zariski t
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Hiroshima Math. J. 49, no. 2 (2019), 289-302
In this paper, we give a Zariski triple of the arrangements for a smooth quartic and its four bitangents. A key criterion to distinguish the topology of such curves is given by a matrix related to the height pairing of rational points arising from th
Autor:
Hiro-o Tokunaga, Hirotaka Ishida
Publikováno v:
Singularities — Niigata–Toyama 2007, J.-P. Brasselet, S. Ishii, T. Suwa and M. Vaquie, eds. (Tokyo: Mathematical Society of Japan, 2009)
Let $B$ be a reduced sextic curve in $\mathbb{P}^2$. In the case when singularities of $B$ are only six cusps, Zariski proved that there exists a non-Galois triple cover branched at $B$ if and only if $B$ is given by an equation of the form $G_2^3 +