Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Oğuz, Ezgi Kantarci"'
We generalize several classical results about Schur functions to the family of cylindric Schur functions. First, we give a combinatorial proof of a Murnaghan--Nakayama formula for expanding cylindric Schur functions in the power-sum basis. We also ex
Externí odkaz:
http://arxiv.org/abs/2311.07382
Autor:
Oğuz, Ezgi Kantarcı, Yıldırım, Emine
We give two new combinatorial methods for computing cluster expansion formulas for arcs coming from possibly punctured surfaces. The first is by using $T$-walks, an extension of the $T$-path model for unpunctured surfaces to general surfaces. We also
Externí odkaz:
http://arxiv.org/abs/2211.08011
We introduce a class of polytopes that we call chainlink polytopes and which allow us to construct infinite families of pairs of non isomorphic rational polytopes with the same Ehrhart quasi-polynomial. Our construction is based on circular fence pos
Externí odkaz:
http://arxiv.org/abs/2211.08382
Autor:
Oğuz, Ezgi Kantarcı
We define oriented posets with correpsonding rank matrices, where linking two posets by an edge corresponds to matrix multiplication. In particular, linking chains via this method gives us fence posets, and taking traces gives us circular fence poset
Externí odkaz:
http://arxiv.org/abs/2206.05517
We prove a conjecture of Morier-Genoud and Ovsienko that says that rank polynomials of the distributive lattices of lower ideals of fence posets are unimodal. We do this by introducing a related class of circular fence posets and proving a stronger v
Externí odkaz:
http://arxiv.org/abs/2112.00518
Publikováno v:
Ark. Mat., 59 (2021), 247-274
We examine a few families of semistandard Young tableaux, for which we observe the cyclic sieving phenomenon under promotion. The first family we consider consists of stretched hook shapes, where we use the cocharge generating polynomial as CSP-polyn
Externí odkaz:
http://arxiv.org/abs/2007.10478
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Oğuz, Ezgi Kantarcı
Publikováno v:
The Electronic Journal of Combinatorics, Volume 29, Issue 3 (2022) P3.51
The shuffle product has a connection with several useful permutation statistics such as descent and peak, and corresponds to the multiplication operation in the corresponding descent and peak algebras. In their recent work, Gessel and Zhuang formaliz
Externí odkaz:
http://arxiv.org/abs/1807.01398
Autor:
Oğuz, Ezgi Kantarci
A permutation $\sigma=\sigma_1 \sigma_2 \cdots \sigma_n$ has a descent at $i$ if $\sigma_i>\sigma_{i+1}$. A descent $i$ is called a peak if $i>1$ and $i-1$ is not a descent. The size of the set of all permutations of $n$ with a given descent set is a
Externí odkaz:
http://arxiv.org/abs/1806.05353
Autor:
Assaf, Sami, Oguz, Ezgi Kantarci
We define operators on semistandard shifted tableaux and use Stembridge's local characterization for regular graphs to prove they define a crystal structure. This gives a new proof that Schur $P$-polynomials are Schur positive. We define queer crysta
Externí odkaz:
http://arxiv.org/abs/1803.06317