Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Nurhayat Ispir"'
Publikováno v:
Journal of Inequalities and Applications, Vol 2017, Iss 1, Pp 1-24 (2017)
Abstract Agrawal et al. (Boll. Unione Mat. Ital. 8:169-180, 2015) introduced a Stancu-type Kantorovich modification of the operators proposed by Ren and Zeng (Bull. Korean Math. Soc. 50(4):1145-1156, 2013) and studied a basic convergence theorem by u
Externí odkaz:
https://doaj.org/article/86b0c52f729d451388544fe867aa08e7
Autor:
Vijay Gupta, Nurhayat Ispir
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2004, Iss 71, Pp 3951-3958 (2004)
We study the simultaneous approximation for a certain variant of Bernstein-type operators.
Externí odkaz:
https://doaj.org/article/2effd82452d94401b84d82f4b2524edf
Autor:
Nesibe Manav, Nurhayat Ispir
Publikováno v:
Kragujevac Journal of Mathematics. 45:309-322
We introduce a genuine summation-integral type operators based on Lupaş-Jain type base functions related to the unbounded sequences. We investigated their degree of approximation in terms of modulus of continuity and ????-functional for the function
Autor:
NESIBE MANAV1 nmanav@gazi.edu.tr, NURHAYAT ISPIR1 nispir@gazi.edu.tr
Publikováno v:
Journal of Science & Arts. Dec2018, Vol. 18 Issue 4, p853-868. 16p.
Autor:
Esma Özkan Yıldız, Nurhayat Ispir
Publikováno v:
Filomat. 32:2257-2271
In the present paper, we introduce a generalization of Bal?zs-Szabados operators by means of (p,q)-calculus. We give the rate of convergence of Bal?zs-Szabados operators on based (p,q)-integrers by using Lipschitz class function and the Peetre?s K-fu
Publikováno v:
Numerical Functional Analysis and Optimization. 39:295-307
Sharma (Appl. Math. Comput. 259:741-752) introduced the mixed summation integral-type two-dimensional q-Lupas-Phillips-Bernstein operators (D) over tilde)(n,m)(qn,qm), wherein he established the rate of approximation by applying Korovkin theorem and
Publikováno v:
Mathematical Methods in the Applied Sciences. 40:5687-5706
Ren and Zeng (2013) introduced a new kind of q-Bernstein-Schurer operators and studied some approximation properties. Acu etal. (2016) defined the Durrmeyer modification of these operators and studied the rate of convergence and statistical approxima
Publikováno v:
Applied Mathematics & Information Sciences. 11:423-432
Publikováno v:
Journal of Inequalities and Applications, Vol 2017, Iss 1, Pp 1-24 (2017)
Agrawal et al. (Boll. Unione Mat. Ital. 8:169-180, 2015) introduced a Stancu-type Kantorovich modification of the operators proposed by Ren and Zeng (Bull. Korean Math. Soc. 50(4):1145-1156, 2013) and studied a basic convergence theorem by using the
Autor:
Nurhayat Ispir, Nesibe Manav
Publikováno v:
Tbilisi Math. J. 12, iss. 2 (2019), 119-135
The present paper deals with the rate of convergence of genuine type Durrmeyer operators having Lupas-Szasz type basis functions. We study some direct estimates to give the degree of approximation to continuous functions. Further, we investigate poin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68c210574e847c4bafc4572b736f65cc
https://avesis.gazi.edu.tr/publication/details/d2101ec5-ad80-4b0c-8795-0edede8273d1/oai
https://avesis.gazi.edu.tr/publication/details/d2101ec5-ad80-4b0c-8795-0edede8273d1/oai