Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Nurettin Irmak"'
Publikováno v:
Turkish Journal of Mathematics. 47:1129-1143
Autor:
Nurettin Irmak
Publikováno v:
Volume: 50, Issue: 6 1652-1657
Hacettepe Journal of Mathematics and Statistics
Hacettepe Journal of Mathematics and Statistics
The Tribonacci-Lucas sequence {Sn}{Sn} is defined by the recurrence relation Sn+3=Sn+2+Sn+1+SnSn+3=Sn+2+Sn+1+Sn with S0=3, S1=1, S2=3.S0=3, S1=1, S2=3. In this note, we show that 11 is the only perfect square in Tribonacci-Lucas sequence for n≢1(
Autor:
Prasanta Kumar Ray, Nurettin Irmak
Publikováno v:
Acta Mathematica Hungarica. 162:527-538
Let $$F_{n}$$ and $$L_{n}$$ be the nth Fibonacci and Lucas number, respectively. The order of appearance is defined as the smallest natural number k such that n divides $$F_{k}$$ and denoted by z(n) . In this paper, we give explicit formulas for the
Publikováno v:
Notes on Number Theory and Discrete Mathematics. 25:96-101
Autor:
Nurettin Irmak, Bo He
Publikováno v:
Notes on Number Theory and Discrete Mathematics. 25:102-109
Autor:
László Szalay, Nurettin Irmak
Publikováno v:
Acta et Commentationes Universitatis Tartuensis de Mathematica. 23:65-70
Let Lm denote the mth Lucas number. We show that the solutions to the diophantine equation (2t/k) = Lm, in non-negative integers t, k ≤ 2t−1, and m, are (t, k, m) = (1, 1, 0), (2, 1, 3), and (a, 0, 1) with non-negative integers a.
Autor:
Nurettin Irmak, Cahit Köme
Publikováno v:
Volume: 50, Issue: 2 549-558
Hacettepe Journal of Mathematics and Statistics
Hacettepe Journal of Mathematics and Statistics
In this paper, we give the factorization and inverse factorization of the Lucas matrix via (0,1,2)-matrix whose entries are either 0, 1 and 2. We also investigate the Cholesky factorization of the symmetric Lucas matrix. Moreover, by using some major
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::027531001e44a81629d8272996fb8106
https://dergipark.org.tr/tr/pub/hujms/issue/61276/746184
https://dergipark.org.tr/tr/pub/hujms/issue/61276/746184
Autor:
Abdullah Acikel, Nurettin Irmak
Publikováno v:
Miskolc Mathematical Notes. 23:5
Autor:
Nurettin Irmak, Alain Togbé
Publikováno v:
Notes on Number Theory and Discrete Mathematics. 24:95-102
Autor:
Abdullah Açikel, Nurettin Irmak
Publikováno v:
Volume: 8, Issue: 2 48-53
Mathematical Sciences and Applications E-Notes
Mathematical Sciences and Applications E-Notes
In this paper, we give a new approach to obtain identities for Fibonacci Lucas octonions. ................................................................................................................................................................
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b343c22b9b9ac3567791b569aad71587
https://dergipark.org.tr/tr/pub/mathenot/issue/57179/591307
https://dergipark.org.tr/tr/pub/mathenot/issue/57179/591307