Zobrazeno 1 - 10
of 137
pro vyhledávání: '"Nowakowski, A. F."'
Autor:
Bestehorn, Michael, Michelitsch, Thomas M., Collet, Bernard A., Riascos, Alejandro P., Nowakowski, Andrzej F.
Publikováno v:
Phys. Rev. E 105, 024205 (2022)
We introduce a modified SIR model with memory for the dynamics of epidemic spreading in a constant population of individuals. Each individual is in one of the states susceptible (${\bf S}$), infected (${\bf I}$) or recovered (${\bf R}$). In the state
Externí odkaz:
http://arxiv.org/abs/2111.08950
Autor:
Michelitsch, Thomas M., Riascos, Alejandro Perez, Collet, Bernard, Nowakowski, Andrzej F., Nicolleau, Franck
We analyze generalized space-time fractional motions on undirected networks and lattices. The continuous-time random walk (CTRW) approach of Montroll and Weiss is employed to subordinate a space fractional walk to a generalization of the time-fractio
Externí odkaz:
http://arxiv.org/abs/1910.05949
In this paper, we explore different Markovian random walk strategies on networks with transition probabilities between nodes defined in terms of functions of the Laplacian matrix. We generalize random walk strategies with local information in the Lap
Externí odkaz:
http://arxiv.org/abs/1712.04256
Publikováno v:
T M Michelitsch et al 2017 J. Phys. A: Math. Theor. 50 505004
We analyze a random walk strategy on undirected regular networks involving power matrix functions of the type $L^{\frac{\alpha}{2}}$ where $L$ indicates a `simple' Laplacian matrix. We refer such walks to as `Fractional Random Walks' with admissible
Externí odkaz:
http://arxiv.org/abs/1707.05843
A new mathematical model for non-equilibrium evaporation/condensation including boiling effect is proposed. A simplified differential-algebraic system of equations is obtained. A code to solve numerically this differential-algebraic system has been d
Externí odkaz:
http://arxiv.org/abs/1707.01497
Publikováno v:
Phys. Rev. E., 92(2): 023028 (2015)
The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using an Eularian type mathematical model for compressible multi-component flow problems. The m
Externí odkaz:
http://arxiv.org/abs/1706.08847
Publikováno v:
Phys. Rev. E., 91(4):043021, 2015
In this paper, we study the clustering of inertial particles using a periodic kinematic simulation. The systematic Lagrangian tracking of particles makes it possible to identify the particles' clustering patterns for different values of particle iner
Externí odkaz:
http://arxiv.org/abs/1706.08512
Publikováno v:
Phys. Rev. E., 91(4):043021 (2015)
We study the clustering of inertial particles using a periodic kinematic simulation. Particles clustering is observed for different pairs of Stokes number and Froude number and different spectral power laws ($1.4 \leqslant p \leqslant 2.1$). The main
Externí odkaz:
http://arxiv.org/abs/1706.07284
Publikováno v:
Elsevier, 2016, 92, pp.43-50
We develop physically admissible lattice models in the harmonic approximation which define by Hamilton's variational principle fractional Laplacian matrices of the forms of power law matrix functions on the n -dimensional periodic and infinite lattic
Externí odkaz:
http://arxiv.org/abs/1610.03744
Autor:
Michelitsch, Thomas, Collet, Bernard, Riascos, Alejandro, Nowakowski, Andrzej F, Nicolleau, Franck C G A
We introduce positive elastic potentials in the harmonic approximation leading by Hamilton's variational principle to fractional Laplacian matrices having the forms of power law matrix functions of the simple local Bornvon Karman Laplacian. The fract
Externí odkaz:
http://arxiv.org/abs/1604.01725