Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Nowak, Luis Maria Ricardo"'
Autor:
Nowak, Luis Maria Ricardo
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
In this note we consider Haar type systems as unconditional bases for Lorentz spaces defined on spaces of homogeneous type. We also give characterizations of these spaces in terms of the Haar coefficients. The basic tools are the Rubio de Francia ext
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::9acbd9ba153d2b201ea596cfbdfe8b96
https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53
https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
In this note we give sufficient conditions on two dyadic systems to obtain the equivalence of corresponding Haar systems on dyadic weighted Lebesgue spaces on spaces of homogeneous type. In order to obtain these result we prove a Fefferman-Stein weig
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::849719ee7e0a43f48ee829e4b61796d1
https://amcaonline.org.ar/ojs/index.php/cmm/article/view/3001
https://amcaonline.org.ar/ojs/index.php/cmm/article/view/3001
We explore the relation of the geometric structure of the underlying space and the democratic character of Haar systems in Lorentz spaces. We show that, aside from homogeneity, some particular behavior of the space at large scales is required to reco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c2413fd170e3f8191f94c47efd318a01
https://www.sciencedirect.com/science/article/pii/S0022247X19302719?via=ihub
https://www.sciencedirect.com/science/article/pii/S0022247X19302719?via=ihub
Publikováno v:
Rocky Mountain J. Math. 43, no. 3 (2013), 697-712
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
In this note we prove that Haar type systems are unconditional basis in the generalized dyadic Hardy space HD 1 in the setting of spaces of homogeneous type. As a consequence, we obtain an alternative proof of the unconditionality of such basis in Le
In this note we shall give a characterization of Lipschitz spaces on spaces of homogeneous type via Haar coefficients. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02a19be4988ae90d49da0d037008774e
https://link.springer.com/article/10.1007/s11425-012-4367-1
https://link.springer.com/article/10.1007/s11425-012-4367-1
In this note we give sufficient conditions on two dyadic systemson a space of homogeneous type in order to obtain the equivalence of corre-sponding Haar systems on Lebesgue spaces. The main tool is the vector valuedFe erman-Stein inequality for the H
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c2fa106a741c1209af09b7dcb3c192c