Zobrazeno 1 - 10
of 125
pro vyhledávání: '"Novikov, R. G."'
Autor:
Grinevich, P. G., Novikov, R. G.
{We give a short review of old and recent results on scatterers with transmission eigenvalues of infinite multiplicity, including transparent scatterers. Historically, these studies go back to the publications: Regge (Nuovo Cimento 14, 1959), Newton
Externí odkaz:
http://arxiv.org/abs/2407.16451
Autor:
Grinevich, P. G., Novikov, R. G.
We study the transmission eigenvalues for the multipoint scatterers of the Bethe-Peierls-Fermi-Zeldovich-Beresin-Faddeev type in dimensions $d=2$ and $d=3$. We show that for these scatterers: 1) each positive energy $E$ is a transmission eigenvalue (
Externí odkaz:
http://arxiv.org/abs/2108.08361
Autor:
Grinevich, P. G., Novikov, R. G.
We continue to develop the method for creation and annihilation of contour singularities in the $\bar\partial$--spectral data for the two-dimensional Schr\"odinger equation at fixed energy. Our method is based on the Moutard-type transforms for gener
Externí odkaz:
http://arxiv.org/abs/1911.09627
We consider the inverse problem of recovering the spherically symmetric sound speed, density and attenuation in the Sun from the observations of the acoustic field randomly excited by turbulent convection. We show that observations at two heights abo
Externí odkaz:
http://arxiv.org/abs/1907.05939
Autor:
Novikov, R. G., Taimanov, I. A.
Publikováno v:
Proc. Steklov Inst. Math. 302 (2018), 315-324
Formulas relating Poincare-Steklov operators for Schroedinger equations related by Darboux-Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.
Comment
Comment
Externí odkaz:
http://arxiv.org/abs/1808.03236
Autor:
Grinevich, P. G., Novikov, R. G.
We construct Darboux-Moutard type transforms for the two-dimensional conductivity equation. This result continues our recent studies of Darboux-Moutard type transforms for generalized analytic functions. In addition, at least, some of the Darboux-Mou
Externí odkaz:
http://arxiv.org/abs/1801.00295
Autor:
Novikov, R. G.
Publikováno v:
Proceedings of the Steklov Institute of Mathematics; 10/22/2024, Vol. 325 Issue 1, p218-223, 6p
Autor:
Grinevich, P. G., Novikov, R. G.
Publikováno v:
Theoret. and Math. Phys., 2017, v.193, No.2, pp. 1675-1679
We study multipoint scatterers with zero-energy bound states in three dimensions. We present examples of such scatterers with multiple zero eigenvalue or with strong multipole localization of zero-energy bound states.
Comment: LaTeX, 7 pages, mi
Comment: LaTeX, 7 pages, mi
Externí odkaz:
http://arxiv.org/abs/1610.02319
Autor:
Novikov, R. G., Taimanov, I. A.
Publikováno v:
Russian Math. Surveys 71:5 (2016), 970-972
A Moutard type transformation for matrix generalized analytic functions is derived. Relations between Moutard type transforms and gauge transformations are demonstrated.
Comment: 3 pages
Comment: 3 pages
Externí odkaz:
http://arxiv.org/abs/1607.06661
Autor:
Grinevich, P. G., Novikov, R. G.
Publikováno v:
Bulletin des sciences math\'ematiques, 2016, v. 140, issue 6, pp. 638-656
We continue studies of Moutard-type transforms for the generalized analytic functions started in arXiv:1510.08764, arXiv:1512.00343. In particular, we show that generalized analytic functions with the simplest contour poles can be Moutard transformed
Externí odkaz:
http://arxiv.org/abs/1512.08874