Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Novais, Rafael"'
Autor:
Novais, Rafael Rezende
Com o quadro de escassez hídrica apresentado nos últimos anos no estado de São Paulo, cada vez é mais evidente a necessidade do planejamento e gerenciamento dos recursos hídricos de forma racional, compartilhada e sustentável. Além do aumento
We present a characterization for the rotational soliton for the curve shortening flow (CSF) on the revolution surfaces of $\mathbb{R}^3$. Furthermore, we describe the behavior of such curves by showing that the two ends of each open curve are asympt
Externí odkaz:
http://arxiv.org/abs/2204.06678
Publikováno v:
Differential Geometry and its Applications 2023
In this paper we make an analysis of self-similar solutions for the mean curvature flow (MCF) by surfaces of revolution and ruled surfaces in $\mathbb{R}^{3}$. We prove that self-similar solutions of the MCF by non-cylindrival surfaces and conical su
Externí odkaz:
http://arxiv.org/abs/2005.10688
Autor:
Novais, Rafael Marlon de
Publikováno v:
Repositório Institucional da UnBUniversidade de BrasíliaUNB.
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017.
Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-06-05T18:17:31Z No. of bitstreams: 1 2017_RafaelMarlondeNovais.pd
Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-06-05T18:17:31Z No. of bitstreams: 1 2017_RafaelMarlondeNovais.pd
Externí odkaz:
http://repositorio.unb.br/handle/10482/23735
Publikováno v:
In Differential Geometry and its Applications April 2023 87
Autor:
Novais, Rafael, Santos, João Paulo dos
In this paper, geometric characterizations of conformally flat and radially flat hypersurfaces in $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ are given by means of their extrinsic geometry. Under suitable conditions on the s
Externí odkaz:
http://arxiv.org/abs/1704.04702
Autor:
Moreira, Luana Lavagnoli, Novais, Rafael Rezende, Schwamback, Dimaghi, Carvalho Júnior, Salomão Martins de
Publikováno v:
World Journal of Science, Technology and Sustainable Development, 2020, Vol. 17, Issue 3, pp. 297-309.
We present a characterization for the initial data of a soliton solution for the curve shortening flow (CSF) on the torus of revolution. Furthermore, we describe the behavior of such solutions by showing that the two ends of each curve are asymptotic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6828ac7c3ffb7ea8d233d96166f33f3
Autor:
Novais, Rafael, Santos, João
Publikováno v:
Journal of Geometry; Dec2017, Vol. 108 Issue 3, p1115-1127, 13p