Zobrazeno 1 - 10
of 167
pro vyhledávání: '"Noumi, M."'
Publikováno v:
In Journal of Alloys and Compounds 15 June 2021 866
We present a fourfold series expansion representing the Askey-Wilson polynomials. To obtain the result, a sequential use is made of several summation and transformation formulas for the basic hypergeometric series, including the Verma's q-extension o
Externí odkaz:
http://arxiv.org/abs/1406.1628
A theoretical foundation for a generalization of the elliptic difference Painlev\'e equation to higher dimensions is provided in the framework of birational Weyl group action on the space of point configurations in general position in a projective sp
Externí odkaz:
http://arxiv.org/abs/nlin/0411003
Autor:
Mimachi, K., Noumi, M.
We present a new formula of Cauchy type for the nonsymmetric Macdonald polynomials which are joint eigenfunctions of q-Dunkl operators. This gives the explicit formula for a reproducing kernel on the polynomial ring of n variables.
Comment: 19 p
Comment: 19 p
Externí odkaz:
http://arxiv.org/abs/q-alg/9610014
Autor:
Dijkhuizen, M. S., Noumi, M.
We define a one-parameter family of two-sided coideals in U_q(gl(n)) and study the corresponding algebras of infinitesimally right invariant functions on the quantum unitary group U_q(n). The Plancherel decomposition of these algebras with respect to
Externí odkaz:
http://arxiv.org/abs/q-alg/9605017
We present a one-parameter family of constant solutions of the reflection equation and define a family of quantum complex Grassmannians endowed with a transitive action of the quantum unitary group. By computing the radial part of a suitable Casimir
Externí odkaz:
http://arxiv.org/abs/q-alg/9603014
Publikováno v:
Phys.Lett. B322 (1994) 192-197
We study the relation between topological string theory and singularity theory using the partition function of $A_{N-1}$ topological string defined by matrix integral of Kontsevich type. Genus expansion of the free energy is considered, and the genus
Externí odkaz:
http://arxiv.org/abs/hep-th/9307115
Publikováno v:
Lett.Math.Phys. 30 (1993) 35-44
We give the Heisenberg realization for the quantum algebra $U_q(sl_n)$, which is written by the $q$-difference operator on the flag manifold. We construct it from the action of $U_q(sl_n)$ on the $q$-symmetric algebra $A_q(Mat_n)$ by the Borel-Weil l
Externí odkaz:
http://arxiv.org/abs/hep-th/9306010
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.