Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Noquez, Victoria"'
We forge connections between the theory of fractal sets obtained as attractors of iterated function systems and process calculi. To this end, we reinterpret Milner's expressions for processes as contraction operators on a complete metric space. When
Externí odkaz:
http://arxiv.org/abs/2306.03894
Autor:
Ratnayake, Jayampathy, Manokaran, Annanthakrishna, Jayewardene, Romaine, Noquez, Victoria, Moss, Lawrence S.
This paper studies presentations of the Sierpinski gasket as a final coalgebra for functors on several categories of metric spaces with additional designated points. The three categories which we study differ on their morphisms: one uses short (non-e
Externí odkaz:
http://arxiv.org/abs/2110.06916
Autor:
Noquez, Victoria, Moss, Lawrence S.
Publikováno v:
EPTCS 372, 2022, pp. 249-261
We advance the program of connections between final coalgebras as sources of circularity in mathematics and fractal sets of real numbers. In particular, we are interested in the Sierpinski carpet, taking it as a fractal subset of the unit square. We
Externí odkaz:
http://arxiv.org/abs/2110.06404
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Noquez, Victoria
We prove the following continuous analogue of Vaught's Two-Cardinal Theorem: if for some $\kappa>\lambda\geq \aleph_0$, a continuous theory $T$ has a model with density character $\kappa$ which has a definable subset of density character $\lambda$, t
Externí odkaz:
http://arxiv.org/abs/1710.05809
Autor:
Noquez, Victoria, Moss, Lawrence S.
Publikováno v:
Electronic Proceedings in Theoretical Computer Science. 372:249-261
We advance the program of connections between final coalgebras as sources of circularity in mathematics and fractal sets of real numbers. In particular, we are interested in the Sierpinski carpet, taking it as a fractal subset of the unit square. We
Autor:
Noquez, Victoria
Publikováno v:
Bulletin of Symbolic Logic; Jun2019, Vol. 25 Issue 2, p215-216, 2p