Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Nonlocal minimal surfaces"'
Autor:
Claudia Bucur
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 14, Iss 1, Pp 38-57 (2023)
In this survey we discuss some existence and asymptotic results, originally obtained in [4,3], for functions of least Ws,1-fractional seminorm. We present the connection between these functions and nonlocal minimal surfaces, leveraging this relation
Externí odkaz:
https://doaj.org/article/d8e20ff4fb9243e886ad946a19532160
Publikováno v:
Mathematics in Engineering, Vol 4, Iss 2, Pp 1-29 (2022)
We discuss computational and qualitative aspects of the fractional Plateau and the prescribed fractional mean curvature problems on bounded domains subject to exterior data being a subgraph. We recast these problems in terms of energy minimization, a
Externí odkaz:
https://doaj.org/article/3b7234f605cc4ca8a30854469970e5f8
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 11, Iss 1, Pp 44-67 (2020)
In this note, we showcase some recent results obtained in [DSV19] concerning the stickiness properties of nonlocal minimal graphs in the plane. To start with, the nonlocal minimal graphs in the planeenjoy an enhanced boundary regularity, since bounda
Externí odkaz:
https://doaj.org/article/858b86ac1cbd4d7f88b5a96cbcb373ce
Autor:
Lombardini Luca
Publikováno v:
Advanced Nonlinear Studies, Vol 19, Iss 1, Pp 165-196 (2019)
The purpose of this paper consists in a better understanding of the fractional nature of the nonlocal perimeters introduced in [L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 2010, 9, 1111–1144].
Externí odkaz:
https://doaj.org/article/ac3f44ff85d5403f9003edf746a2dd21
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Calibrations and null-Lagrangians for nonlocal perimeters and an application to the viscosity theory
Autor:
Xavier Cabré
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
For nonnegative even kernels $K$, we consider the $K$-nonlocal perimeter functional acting on sets. Assuming the existence of a foliation of space made of solutions of the associated $K$-nonlocal mean curvature equation in an open set $\Omega\subset\
Autor:
Annalisa Cesaroni, Matteo Novaga
We consider the evolution of sets by nonlocal mean curvature and we discuss the preservation along the flow of two geometric properties, which are the mean convexity and the outward minimality. The main tools in our analysis are the level set formula
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45338d43242628969c378e7a115756a9
http://hdl.handle.net/11577/3440763
http://hdl.handle.net/11577/3440763
Publikováno v:
Journal für die reine und angewandte Mathematik, 764 (2020)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
We prove that half spaces are the only stable nonlocal s-minimal cones in ℝ3, for s∈(0,1) sufficiently close to 1. This is the first classification result of stable s-minimal cones in dimension higher than two. Its proof cannot rely on a compactn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c4cd94770837d11dbe66507515943e8
https://hdl.handle.net/20.500.11850/426602
https://hdl.handle.net/20.500.11850/426602
Autor:
Luca Lombardini
Publikováno v:
Advanced Nonlinear Studies. 19:165-196
The purpose of this paper consists in a better understanding of the fractional nature of the nonlocal perimeters introduced in [L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 2010, 9, 1111–1144].