Zobrazeno 1 - 10
of 2 494
pro vyhledávání: '"Nonlinear wave equation"'
Autor:
Shuya Guo, Defeng Kong, Jalil Manafian, Khaled H. Mahmoud, A.S.A. Alsubaie, Neha Kumari, Rohit Sharma, Nafis Ahmad
Publikováno v:
Alexandria Engineering Journal, Vol 106, Iss , Pp 1-18 (2024)
In this paper, the generalized (3+1)-dimensional nonlinear wave equation in fluid with gas bubbles is studied in soliton theory and produced by taking the Hirota bilinear operators. The first- to third rogue wave solutions through numerous rogue wave
Externí odkaz:
https://doaj.org/article/1408cce279c4442ab855c2b3ad25535c
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-25 (2024)
Abstract The current paper undertakes an in-depth exploration of the dynamics of nonlinear waves governed by a 3D-modified nonlinear wave equation, a significant model in the study of complex wave phenomena. To this end, the study employs both classi
Externí odkaz:
https://doaj.org/article/d8b2708f61b24e1cb703ed50fed013a8
Autor:
Tassos Bountis, Julia Cantisán, Jesús Cuevas-Maraver, J.E. Macías-Díaz, Panayotis G. Kevrekidis
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 11, Iss , Pp 100807- (2024)
In honor of the great Russian mathematician A. N. Kolmogorov, we would like to draw attention in the present paper to a curious mathematical observation concerning fractional differential equations describing physical systems, whose time evolution fo
Externí odkaz:
https://doaj.org/article/fa27733e235f4fe6b585df4d0e77ef48
Publikováno v:
Axioms, Vol 13, Iss 10, p 709 (2024)
In this paper, we study the initial boundary value problem for wave equations with combined logarithmic and power-type nonlinearities. For arbitrary initial energy, we prove a necessary and sufficient condition for blow up at infinity of the global w
Externí odkaz:
https://doaj.org/article/f494706a7a174f04ab7717f0fbf89d80
Autor:
Tingting Ma, Yuehua He
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 26574-26589 (2023)
The paper considers the Hamiltonian structure and develops efficient energy-preserving schemes for the nonlinear wave equation with a fractional Laplacian operator. To this end, we first derive the Hamiltonian form of the equation by using the fracti
Externí odkaz:
https://doaj.org/article/44f385ec98f54ff18014634c867c6d4e
Publikováno v:
Alexandria Engineering Journal, Vol 73, Iss , Pp 751-769 (2023)
This article investigates a new generalized two-dimensional nonlinear wave equation of engineering physics with various applications in the fields of sciences and engineering. In this study, shock wave and solitary wave solutions were secured via the
Externí odkaz:
https://doaj.org/article/98068a8da16c4b4eb0944474233253db
Autor:
Desheng Hong
Publikováno v:
AIMS Mathematics, Vol 8, Iss 8, Pp 18163-18173 (2023)
Let $ G = (V, E) $ be a local finite connected weighted graph, $ \Omega $ be a finite subset of $ V $ satisfying $ \Omega^\circ\neq\emptyset $. In this paper, we study the nonexistence of the nonlinear wave equation $ \partial^2_t u = \Delta u + f
Externí odkaz:
https://doaj.org/article/26860184ec994142a8d35358fe93bf84
Publikováno v:
Results in Physics, Vol 53, Iss , Pp 106922- (2023)
In this current research, we investigate a new generalized two-dimensional nonlinear wave equation of engineering physics using two versatile approaches. Nonlinear wave models are very important in that they play a key role in modeling diverse occurr
Externí odkaz:
https://doaj.org/article/f7a5b9f143bb4231a4a50dfd97b3fc0c
Publikováno v:
Electronic Research Archive, Vol 31, Iss 6, Pp 3145-3168 (2023)
Nonlinear wave equations are widely used in many areas of science and engineering. This paper proposes two high-order compact (HOC) difference schemes with convergence orders of $ O\left({{\tau ^4} + h_x^4 + h_y^4} \right) $ that can be used to solve
Externí odkaz:
https://doaj.org/article/fe10b5a6dad044fb8c9ca8a7886bcad7
Autor:
V. I. Korzyuk, J. V. Rudzko
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 43, Iss 1, Pp 48-63 (2023)
We study the first mixed problem for the telegraph equation with a nonlinear potential in the first quadrant. We pose the Cauchy conditions on the lower base of the domain and the Dirichlet condition on the lateral boundary. By the method of characte
Externí odkaz:
https://doaj.org/article/f46ac22dfc27495d8d988572a30f014b