Zobrazeno 1 - 10
of 16 002
pro vyhledávání: '"Nonlinear wave equation"'
Autor:
Buckmaster, Tristan, Chen, Jiajie
In this paper, we prove blowup for the defocusing septic complex-valued nonlinear wave equation in $\mathbb{R}^{4+1}$. This work builds on the earlier results of Shao, Wei, and Zhang [SWZ2024a,SWZ2024b], reducing the order of the nonlinearity from $2
Externí odkaz:
http://arxiv.org/abs/2410.15619
Autor:
Forlano, Justin, Tolomeo, Leonardo
We consider the stochastic damped nonlinear wave equation $\partial_t^{2}u+\partial_t u+u-\Delta u +u^{3} = \sqrt{2} {\langle{\nabla}\rangle^{-s}} \xi$ on the two-dimensional torus $\mathbb T^2$, where $\xi$ denotes a space-time white noise and $s>0$
Externí odkaz:
http://arxiv.org/abs/2409.20451
Autor:
Lehner, Pascal
In this paper, we analyze the well-posedness of a first order in time nonlinear wave equation with nonhomogeneous Dirichlet or Neumann type boundary conditions, also known as known as Hodge, Lions or Navier-slip boundary conditions, in fractional Sob
Externí odkaz:
http://arxiv.org/abs/2409.17254
Autor:
Xu, Guixiang, Yang, Pengxuan
We consider the defocusing, cubic nonlinear wave equation with zero Dirichlet boundary value in the exterior $\Omega = \R^3\backslash \bar{ B}(0,1)$. We make use of the distorted Fourier transform in \cite{LiSZ:NLS, Taylor:PDE:II} to establish the di
Externí odkaz:
http://arxiv.org/abs/2406.05614
Autor:
Samuelian, Dylan
The goal of this paper is to exhibit solutions $u(x,t)$ of the focusing, critical energy, nonlinear wave equation \begin{equation} \partial_{tt}u - \Delta u - |u|^{p-1}u = 0, \quad t \geq 0, \ x \in \mathbb{R}^d, \ d \geq 3, \ p = (d+2)/(d-2) \end{eq
Externí odkaz:
http://arxiv.org/abs/2407.08444
Autor:
Shuya Guo, Defeng Kong, Jalil Manafian, Khaled H. Mahmoud, A.S.A. Alsubaie, Neha Kumari, Rohit Sharma, Nafis Ahmad
Publikováno v:
Alexandria Engineering Journal, Vol 106, Iss , Pp 1-18 (2024)
In this paper, the generalized (3+1)-dimensional nonlinear wave equation in fluid with gas bubbles is studied in soliton theory and produced by taking the Hirota bilinear operators. The first- to third rogue wave solutions through numerous rogue wave
Externí odkaz:
https://doaj.org/article/1408cce279c4442ab855c2b3ad25535c
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-25 (2024)
Abstract The current paper undertakes an in-depth exploration of the dynamics of nonlinear waves governed by a 3D-modified nonlinear wave equation, a significant model in the study of complex wave phenomena. To this end, the study employs both classi
Externí odkaz:
https://doaj.org/article/d8b2708f61b24e1cb703ed50fed013a8
Autor:
Alizadeh, Farzaneh1,2,3 (AUTHOR) farzan.alizadeh@neu.edu.tr, Hosseini, Kamyar1,4 (AUTHOR), Sirisubtawee, Sekson5,6 (AUTHOR) sekson.s@sci.kmutnb.ac.th, Hincal, Evren1,2,3 (AUTHOR)
Publikováno v:
Boundary Value Problems. 9/12/2024, Vol. 2024 Issue 1, p1-25. 25p.
In this paper, we consider the defocusing nonlinear wave equation $-\partial_t^2u+\Delta u=|u|^{p-1}u$ in $\mathbb R\times \mathbb R^d$. Building on our companion work ({\it \small Self-similar imploding solutions of the relativistic Euler equations}
Externí odkaz:
http://arxiv.org/abs/2405.19674