Zobrazeno 1 - 10
of 1 839
pro vyhledávání: '"Nonlinear parabolic equations"'
Autor:
Taheri Ali, Vahidifar Vahideh
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 3, Pp 553-591 (2024)
In this paper we prove gradient estimates of both elliptic and parabolic types, specifically, of Souplet-Zhang, Hamilton and Li-Yau types for positive smooth solutions to a class of nonlinear parabolic equations involving the Witten or drifting Lapla
Externí odkaz:
https://doaj.org/article/d905a9020d134bcba225182c134154c4
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 2, Pp 279-302 (2024)
In this paper, we consider the general dual fractional parabolic problem ∂tαu(x,t)+Lu(x,t)=f(t,u(x,t))inRn×R. ${\partial }_{t}^{\alpha }u\left(x,t\right)+\mathcal{L}u\left(x,t\right)=f\left(t,u\left(x,t\right)\right) \text{in} {\mathbb{R}}^{n}{\t
Externí odkaz:
https://doaj.org/article/3b5df280e4c94c81b89fbec5768bb4e0
Publikováno v:
Mathematics in Engineering, Vol 5, Iss 4, Pp 1-43 (2023)
We obtain an approximation result of the weak solutions to elliptic and parabolic equations with Dirichlet boundary conditions. We show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and appro
Externí odkaz:
https://doaj.org/article/866b7567f7634fb6b983569e2295a588
Autor:
Díaz Palencia, José Luis
Publikováno v:
Multidiscipline Modeling in Materials and Structures, 2023, Vol. 19, Issue 5, pp. 781-801.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/MMMS-10-2022-0224
Publikováno v:
Journal of Numerical Analysis and Approximation Theory, Vol 52, Iss 2 (2023)
In this paper, we study numerical approximations of a semilinear parabolic problem in one-dimension, of which the nonlinearity appears both in source term and in Neumann boundary condition. By a semidiscretization using finite difference method, we o
Externí odkaz:
https://doaj.org/article/59afe305e3e443899ac3de07455ce8c4
Publikováno v:
Rendiconti di Matematica e delle Sue Applicazioni, Vol 44, Iss 3-4, Pp 237-266 (2023)
Abstract. This paper is concerned with the study of the non-coercive p(x)-parabolic problems. We prove the existence of entropy solutions for this parabolic equation, and we will conclude some regularity results.
Externí odkaz:
https://doaj.org/article/66805c1c02c64c50b8c6d20fe2c105cb
Autor:
Wei Shi
Publikováno v:
Boundary Value Problems, Vol 2023, Iss 1, Pp 1-12 (2023)
Abstract In this paper, we present necessary conditions for the existence of weak solution of the parabolic-type equations and systems on the Heisenberg group. The main technique for proving the results relies on the method of test functions.
Externí odkaz:
https://doaj.org/article/d4ecf2a23f664af7a8ff2a3b0c4d730a
Autor:
Mengru Liu, Lihong Zhang
Publikováno v:
Fractal and Fractional, Vol 8, Iss 3, p 173 (2024)
This article mainly studies the double index logarithmic nonlinear fractional g-Laplacian parabolic equations with the Marchaud fractional time derivatives ∂tα. Compared with the classical direct moving plane method, in order to overcome the chall
Externí odkaz:
https://doaj.org/article/a6274c67e4184603a6f1447d60786480
Parabolic inequalities in inhomogeneous Orlicz-Sobolev spaces with gradients constraints and L1-data
Autor:
Ajagjal Sana
Publikováno v:
Moroccan Journal of Pure and Applied Analysis, Vol 8, Iss 3, Pp 328-357 (2022)
This work is devoted to the study of a new class of parabolic problems in inhomogeneous Orlicz spaces with gradient constraints and L1-data. One proves the existence of the solution by studying the asymptotic behaviour as p goes to ∞, of a sequence
Externí odkaz:
https://doaj.org/article/ada2cff0a7e94c66af4bf09d096417ca