Zobrazeno 1 - 10
of 6 732
pro vyhledávání: '"Non-Newtonian flows"'
Autor:
Punia, Ashwani, Ray, Rajendra K.
This work introduces a new higher-order accurate super compact (HOSC) finite difference scheme for solving complex unsteady three-dimensional (3D) non-Newtonian fluid flow problems. As per the author's knowledge, the proposed scheme is the first ever
Externí odkaz:
http://arxiv.org/abs/2407.19100
Autor:
Lu, Yong, Oschmann, Florian
In this paper, we consider the homogenization of stationary and evolutionary incompressible viscous non-Newtonian flows of Carreau-Yasuda type in domains perforated with a large number of periodically distributed small holes in $\mathbb{R}^{3}$, wher
Externí odkaz:
http://arxiv.org/abs/2406.17406
Autor:
Lu, Yong, Qian, Zhengmao
In this paper, we consider the homogenization of evolutionary incompressible purely viscous non-Newtonian flows of Carreau-Yasuda type in porous media with small perforation parameter $0< \varepsilon \ll 1$, where the small holes are periodically dis
Externí odkaz:
http://arxiv.org/abs/2310.05121
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.