Zobrazeno 1 - 10
of 202
pro vyhledávání: '"Nogueira, João P."'
Autor:
Nogueira, João M., Salgueiro, António
In this paper we study further when tangles embed into the unknot, the unlink or a split link. In particular, we study obstructions to these properties through geometric characterizations, tangle sums and colorings. As an application we determine whe
Externí odkaz:
http://arxiv.org/abs/2110.15645
Autor:
Nogueira, João Miguel
We show the existence of an infinite collection of hyperbolic knots where each of which has in its exterior meridional essential planar surfaces of arbitrarily large number of boundary components, or, equivalently, that each of these knots has essent
Externí odkaz:
http://arxiv.org/abs/2109.09644
We prove that the tunnel number of a satellite chain link with a number of components higher than or equal to twice the bridge number of the companion is as small as possible among links with the same number of components. We prove this result to be
Externí odkaz:
http://arxiv.org/abs/2104.09861
In this work, we introduce a new graph convexity, that we call Cycle Convexity, motivated by related notions in Knot Theory. For a graph $G=(V,E)$, define the interval function in the Cycle Convexity as $I_{cc}(S) = S\cup \{v\in V(G)\mid \text{there
Externí odkaz:
http://arxiv.org/abs/2012.05656
Autor:
Reis, Saulo D. S., Böttcher, Lucas, Nogueira, João P. da C., Sousa, Geziel S., Neto, Antonio S. Lima, Herrmann, Hans J., Andrade Jr, José S.
After their re-emergence in the last decades, dengue fever and other vector-borne diseases are a potential threat to the lives of millions of people. Based on a data set of dengue cases in the Brazilian city of Fortaleza, collected from 2011 to 2016,
Externí odkaz:
http://arxiv.org/abs/2006.02646
Publikováno v:
J. Knot Theory Ramifications 28 no. 13 (2019), 1940014 (12 pp)
We show a combinatorial argument in the diagram of large class of links, including satellite and hyperbolic links, where for each of which the tunnel number is the minimum possible, the number of its components minus one.
Comment: 12 pages, 7 fi
Comment: 12 pages, 7 fi
Externí odkaz:
http://arxiv.org/abs/2006.01729
Autor:
Nogueira, João M.
Publikováno v:
Israel Journal of Mathematics 225 no. 2 (2018), 909-924
We show the existence of infinitely many knot exteriors where each of which contains meridional essential surfaces of any genus and (even) number of boundary components. That is, the compact surfaces that have a meridional essential embedding into a
Externí odkaz:
http://arxiv.org/abs/2006.01704
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nogueira, João Miguel
Publikováno v:
Topology and its Applications 194 (2015), 427-439
We show the existence of infinitely many prime knots each of which having in their complements meridional essential surfaces with two boundary components and arbitrarily high genus.
Comment: 15 pages, 13 figures
Comment: 15 pages, 13 figures
Externí odkaz:
http://arxiv.org/abs/1706.03719
Autor:
Nogueira, João Miguel
Publikováno v:
Algebraic and Geometric Topology 16 no. 5 (2016), 2535-2548
We construct an infinite collection of knots with the property that any knot in this family has $n$-string essential tangle decompositions for arbitrarily high $n$.
Comment: 11 pages, 6 figures
Comment: 11 pages, 6 figures
Externí odkaz:
http://arxiv.org/abs/1705.06520