Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Nobutaka, Boumuki"'
Autor:
Nobutaka Boumuki
Publikováno v:
Tsukuba Journal of Mathematics. 46
Autor:
Nobutaka Boumuki
Publikováno v:
Kyushu Journal of Mathematics. 72:25-34
Autor:
Nobutaka Boumuki, Tomonori Noda
Publikováno v:
Tsukuba J. Math. 43, no. 2 (2019), 113-143
For a paracomplex manifold, we construct certain cohomology groups. The main purpose of this paper is to clarify a link between such cohomology groups of hyperbolic adjoint orbits and the de Rham cohomology groups of real flag manifolds. That establi
Autor:
Nobutaka Boumuki
Publikováno v:
Recent Topics in Differential Geometry and its Related Fields.
Autor:
Tomonori NODA1 noda-t@cc.osaka-dent.ac.jp, Nobutaka BOUMUKI2
Publikováno v:
Differential Geometry of Submanifolds & Its Related Topics - Proceedings of the International Workshop in Honor of S Maeda's 60th Birthday. 2013, p119-127. 9p.
Autor:
Tomonori Noda, Nobutaka Boumuki
Publikováno v:
Journal of Mathematics Research. 10:62
In this paper we consider a homogeneous holomorphic line bundle over an elliptic adjoint orbit of a real semisimple Lie group, and set a continuous representation of the Lie group on a certain complex vector subspace of the complex vector space of ho
Autor:
Tomonori, Noda, Nobutaka, Boumuki
Publikováno v:
東北數學雜誌. Second series = Tohoku mathematical journal. Second series. 61(1):67-82
In this paper, we investigate relation between pseudo-Hermitian symmetric pairs and para-Hermitian symmetric ones.
Autor:
Nobutaka Boumuki
Publikováno v:
Canadian Mathematical Bulletin. 47:492-503
The main purpose of this paper is to determine isotropic immersions of complex space forms into real space forms with low codimension. This is an improvement of a result of S. Maeda.
Autor:
Nobutaka Boumuki
Publikováno v:
Bulletin of the Polish Academy of Sciences Mathematics. 52:431-436
Autor:
Nobutaka Boumuki
Publikováno v:
J. Math. Soc. Japan 66, no. 1 (2014), 37-88
The main purpose of this paper is to classify the real forms $M$ of simple irreducible pseudo-Hermitian symmetric spaces $G/R$ with $G$ non-compact. That provides an extension of Jaffee's results (Bull. Amer. Math. Soc. '75; J. Differential Geom. '78
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6851b719842a3b0102e043620c6cc513
http://projecteuclid.org/euclid.jmsj/1390600836
http://projecteuclid.org/euclid.jmsj/1390600836