Zobrazeno 1 - 10
of 331
pro vyhledávání: '"Nishimura Dwight G"'
Purpose: To develop a method for banding-free bSSFP cardiac cine with substantially reduced flow artifacts. Methods: A projection-reconstruction (PR) trajectory is proposed for a frequency-modulated cine sequence, facilitating reconstruction of three
Externí odkaz:
http://arxiv.org/abs/2102.11428
Publikováno v:
IEEE Trans Med Imaging. 2008 Jan;27(1):47-57. PMID: 18270061
Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-imaging. They are robust to flow and motion, have diffuse aliasing patterns, and support short
Externí odkaz:
http://arxiv.org/abs/2101.04660
Autor:
Koundinyan, Srivathsan P., Baron, Corey A., Malave, Mario O., Ong, Frank, Addy, Nii Okai, Cheng, Joseph Y., Yang, Phillip C., Hu, Bob S., Nishimura, Dwight G.
Purpose: To develop a respiratory-resolved motion-compensation method for free-breathing, high-resolution coronary magnetic resonance angiography using a 3D cones trajectory. Methods: To achieve respiratory-resolved 0.98 mm resolution images in a cli
Externí odkaz:
http://arxiv.org/abs/1910.12199
Autor:
Koundinyan, Srivathsan P., Cheng, Joseph Y., Malave, Mario O., Yang, Phillip C., Hu, Bob S., Nishimura, Dwight G., Baron, Corey A.
Purpose: To study the accuracy of motion information extracted from beat-to-beat 3D image-based navigators (3D iNAVs) collected using a variable-density cones trajectory with different combinations of spatial resolutions and scan acceleration factors
Externí odkaz:
http://arxiv.org/abs/1910.12185
Autor:
Malavé, Mario O., Baron, Corey A., Koundinyan, Srivathsan P., Sandino, Christopher M., Ong, Frank, Cheng, Joseph Y., Nishimura, Dwight G.
Purpose: To rapidly reconstruct undersampled 3D non-Cartesian image-based navigators (iNAVs) using an unrolled deep learning (DL) model for non-rigid motion correction in coronary magnetic resonance angiography (CMRA). Methods: An unrolled network is
Externí odkaz:
http://arxiv.org/abs/1910.11414
Purpose: Off-resonance artifact correction by deep-learning, to facilitate rapid pediatric body imaging with a scan time efficient 3D cones trajectory. Methods: A residual convolutional neural network to correct off-resonance artifacts (Off-ResNet) w
Externí odkaz:
http://arxiv.org/abs/1810.00072
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Singer, Lisa, Wilmes, Lisa J., Saritas, Emine U., Shankaranarayanan, Ajit, Proctor, Evelyn, Wisner, Dorota J., Chang, Belinda, Joe, Bonnie N., Nishimura, Dwight G., Hylton, Nola M.
Publikováno v:
In Academic Radiology May 2012 19(5):526-534
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 15, Iss Suppl 1, p P52 (2013)
Externí odkaz:
https://doaj.org/article/a2b97d0ec8e945dcaed00679114011d3
Publikováno v:
Journal of Cardiovascular Magnetic Resonance, Vol 14, Iss Suppl 1, p P237 (2012)
Externí odkaz:
https://doaj.org/article/8f1949f8582e4fb29821bd67c484ee44