Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Nipp, Kaspar"'
Diss. Nr. 6643 Math. ETH Zürich.
Externí odkaz:
http://e-collection.ethbib.ethz.ch/show?type=diss&nr=6643
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nipp, Kaspar, Stoffer, Daniel
In this book dynamical systems are investigated from a geometric viewpoint. Admitting an invariant manifold is a strong geometric property of a dynamical system. This text presents rigorous results on invariant manifolds and gives examples of possibl
Autor:
Jeltsch, Rolf, Nipp, Kaspar
Publikováno v:
SAM Research Report, 2003-16
In 1997 a new interdisciplinary Diploma program in Computational Science and Engineering (CSE) was started at ETH Zurich. We report on the changes of the curriculum due to the Bologna Declaration of June 19, 1999 by the European Ministers of Educatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4827772785b15db18963c1c54863cdd5
https://hdl.handle.net/20.500.11850/147917
https://hdl.handle.net/20.500.11850/147917
Autor:
Jeltsch, Rolf, Nipp, Kaspar
Publikováno v:
SAM Research Report, 2002-04
In 1997 a new interdisciplinary program to obtain a Diploma (M.S.) in CSE was started at the ETH Zurich. It is a two and a half years program for students with a two years background in different fields such as electrical or mechanical engineering, c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7fb25c0fd63b3afc52470f0b03a893ee
Autor:
Nipp, Kaspar
Publikováno v:
SAM Research Report, 1999-12
The dynamics of a differential algebraic equation takes place on a lower dimensional manifold in phase space. Applying a numerical integration scheme, it is natural to ask if and how this geometric property is preserved by the discrete dynamical syst
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c481f8cc8856dc1a8768c438fb9a56b6
Autor:
Nipp, Kaspar, Stoffer, Daniel
Publikováno v:
SAM Research Report, 1995-03
It is shown that appropriate linear multi-step methods (LMMs) applied to singularly perturbed systems of ODEs preserve the geometric properties of the underlying ODE. If the ODE admits an attractive invariant manifold so does the LMM. The continuous
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31ac552e78378c0ec8d3bcd68994d37b
Publikováno v:
SAM Research Report, 1993-01
Runge-Kutta methods applied to stiff systems in singular perturbation form are shown to give accurate approximations of phase portraits near hyperbolic stationary points. We prove that Runge-Kutta solutions shadow solutions of the differential equati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::50561b4fd02c587fce98448f8eff8f91
Autor:
Nipp, Kaspar, Stoffer, Daniel
Publikováno v:
SAM Research Report, 1992-14
For implicit RK-methods applied to singularly perturbed systems of ODEs it is shown that the resulting discrete systems preserve the geometric properties of the underlying ODE. As an application of this invariant manifold result sharp bounds on the g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e0ef92821478b16968ef724e56638dc
https://hdl.handle.net/20.500.11850/146090
https://hdl.handle.net/20.500.11850/146090