Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Nils-Peter Skoruppa"'
Publikováno v:
Journal of Number Theory. 236:349-387
For all Eichler orders with a same squarefree level in a definite quaternion algebra over the field of rational numbers, we prove that a weighted sum of Jacobi theta series associated to these orders is a Jacobi Eisenstein series. Multiply the Fourie
Publikováno v:
Transactions of the American Mathematical Society
We use the theory of Jacobi forms to study the number of elements in a maximal order of a definite quaternion algebra over the field of rational numbers whose characteristic polynomial equals a given polynomial. A certain weighted average of such num
Autor:
Nils-Peter Skoruppa, Stephan Ehlen
Publikováno v:
Contributions in Mathematical and Computational Sciences ISBN: 9783319697116
We propose an algorithm for computing bases and dimensions of spaces of invariants of Weil representations of \({\mathrm {SL}}_2(\mathbb {Z})\) associated to finite quadratic modules. We prove that these spaces are defined over \(\mathbb {Z}\), and t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::087cafc388c6d7613966b287d33e8bda
https://doi.org/10.1007/978-3-319-69712-3_5
https://doi.org/10.1007/978-3-319-69712-3_5
Publikováno v:
Mathematics of Computation. 81:2361-2376
The Rankin convolution type Dirichlet series D F , G ( s ) D_{F,G}(s) of Siegel modular forms F F and G G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F F and G G . In particular, we prove t
Autor:
Nils-Peter Skoruppa, Hatice Boylan
Publikováno v:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 80:213-226
We derive an explicit formula for Hecke Gauss sums of quadratic number fields. As an immediate consequence we obtain a quadratic reciprocity law in quadratic number fields which generalizes the classical one given by Hecke. The proofs use, apart from
Autor:
Nils-Peter Skoruppa
Publikováno v:
Quadratic Forms—Algebra, Arithmetic, and Geometry. :379-389
We describe an implementation for computing holomorphic and skew-holomorphic Jacobi forms of integral weight and scalar index on the full modular group. This implementation is based on formulas derived by one of the authors which express Jacobi forms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::15bd144f5b63a31bfb12f9ddca5fe884
Publikováno v:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 77:229-235
Autor:
Nils-Peter Skoruppa
Publikováno v:
Mathematika. 49:51-57
General upper bounds for lattice kissing numbers are derived using Hurwitz zeta functions and new inequalities for Mellin transforms.
Autor:
Nils-Peter Skoruppa, Eduardo Friedman
Publikováno v:
Journal of the London Mathematical Society. 61:36-50
A formula of Poisson summation type is established for sums involving relative norms in an extension of number fields.