Zobrazeno 1 - 10
of 120
pro vyhledávání: '"Nikulin, Viacheslav"'
Autor:
Nikulin, Viacheslav V.
We give more details to our examples in [9] of K3 surfaces over C such that they have infinite automorphism group but it preserves some elliptic pencil of the K3
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/2006.03942
Autor:
Nikulin, Viacheslav V.
Publikováno v:
For D6: Izv. RAN: Ser. Mat., 83:6 (2019),133---166 (in Russian); Izv. Math., 83:6 (2019), 1201---1233 (in English). For C4: Proc. MIAN, 307 (2019), 148---179 (in Russian); Proc. Steklov Inst. Math., 307(2019), 130---161 (in English)
Var3: In our papers 2013--2018 we classified degenerations and Picard lattices of Kahlerian K3 surfaces with finite symplectic automorphism groups of high order. For remaining groups of small order: $D_6$, $C_4$, $(C_2)^2$, $C_3$, $C_2$ and $C_1$ it
Externí odkaz:
http://arxiv.org/abs/1804.00991
Autor:
Nikulin, Viacheslav V.
Publikováno v:
Izv. RAN: Ser.Mat, 2018, 82:4, 115-177 (in Russian); Izvestiya: Mathematics, 2018, 82:4, 752-816 (English)
Using results of our papers [19], [20] and [21] about classification of degenerations of Kahlerian K3 surfaces with finite symplectic automorphism groups, we classify Picard lattices of Kahlerian K3 surfaces. By classification we understand classific
Externí odkaz:
http://arxiv.org/abs/1707.05677
Publikováno v:
Proc. Moscow Math. Soc. 2017, 78:1, 89-100 (in Russian); Trans. Moscow Math. Soc. 2017, 78, 75-83 (English)
Using our results about Lorentzian Kac--Moody algebras and arithmetic mirror symmetry, we give six series of examples of lattice-polarized K3 surfaces with automorphic discriminant.
Comment: 15 pages
Comment: 15 pages
Externí odkaz:
http://arxiv.org/abs/1702.07551
Autor:
Nikulin, Viacheslav V.
Publikováno v:
Izv. RAN:Ser. Mat, 2017, 81:5, 105-149 (in Russian); Izvestiya: Mathematics, 2017, 81:5, 985-1029 (English)
Similarly to our papers I and II on the subject (see arXiv:1403.6061 and arXiv:1504.00326), we classify degenerations of codimension 2 and higher of Kahlerian K3 surfaces with finite symplectic automorphism groups. In parts I and II, it was done for
Externí odkaz:
http://arxiv.org/abs/1608.04373
Publikováno v:
Proc.London.Math.Soc. 116(2018) 485-533
We describe a new large class of Lorentzian Kac--Moody algebras. For all ranks, we classify 2-reflective hyperbolic lattices S with the group of 2-reflections of finite volume and with a lattice Weyl vector. They define the corresponding hyperbolic K
Externí odkaz:
http://arxiv.org/abs/1602.08359
Autor:
Nikulin, Viacheslav V.
Publikováno v:
Izv. RAN: Ser. Mat, 2016, 80:2, 359--402 (in Russian); Izvestiya: Mathematics, 2016, 80:2, 81--124 (English)
We prove the main Conjecture 4 of our paper arXiv:1403.6061v5, which leads to classification of degenerations of codimension one of Kahlerian K3 surfaces with finite symplectic automorphism groups.
Comment: Var4: 55 pages. We added some classifi
Comment: Var4: 55 pages. We added some classifi
Externí odkaz:
http://arxiv.org/abs/1504.00326
Autor:
Nikulin, Viacheslav V.
Publikováno v:
Izv. RAN. Ser. Mat, 2015, 79:4, 103-158 (in Russian); Izvestiya: Mathematics, 2015, 79:4, 740-794 (English)
Using results of our preprint "Kahlerian K3 surfaces and Niemeier lattices" arXiv:1109.2879 (and the corresponding papers), we classify degenerations of Kahlerian K3 surfaces with finite symplectic automorphism groups.
Comment: Var5: 71 pages. T
Comment: Var5: 71 pages. T
Externí odkaz:
http://arxiv.org/abs/1403.6061
Autor:
Nikulin, Viacheslav V.
Publikováno v:
Part I is published in Izv RAN: Ser Mat., 77:5 (2013), 109-154 (Russian); English Translation in Izvestiya: Mathematics 77:5 (2013), 954-997
Using results (especially see Remark 1.14.7) of our paper "Integral symmetric bilinear forms and some of their applications", 1979, we clarify relation between Kahlerian K3 surfaces and Niemeier lattices. We want to emphasise that all twenty four Nie
Externí odkaz:
http://arxiv.org/abs/1109.2879
Autor:
Nikulin, Viacheslav V.
Publikováno v:
Proceedings of the Edinburgh Mathematical Society (2014) 57, 253-267
This is mainly a review of my results related to the title. We discuss, how many elliptic fibrations and elliptic fibrations with infinite automorphism group (or the Mordell-Weil group) an algebraic K3 surface over an algebraically closed field can h
Externí odkaz:
http://arxiv.org/abs/1010.3904