Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Nikos Labropoulos"'
Autor:
Nikos Labropoulos
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 150,, Pp 1-12 (2017)
In this article, we use an alternative method to prove the existence of an infinite sequence of distinct non-radial nodal G-invariant solutions for critical nonlinear elliptic problems defined in the whole the Euclidean space. Our proof is via ap
Externí odkaz:
https://doaj.org/article/b010920f44a346bf8c4b9c3efe98c3e7
Autor:
Nikos Labropoulos, Athanase Cotsiolis
Publikováno v:
Electronic Journal of Differential Equations, Vol 2007, Iss 164, Pp 1-18 (2007)
Following the work of Ding [21] we study the existence of a nontrivial positive solution to the nonlinear Neumann problem $$displaylines{ Delta_qu+a(x)u^{q-1}=lambda f(x)u^{p-1}, quad u>0quad hbox{on } T,cr abla u|^{q-2}frac{partial u}{partial u}+b(x
Externí odkaz:
https://doaj.org/article/6625859d6eec43a2ae3c22530e7da025
Autor:
Nikos Labropoulos
Publikováno v:
Rendiconti del Circolo Matematico di Palermo Series 2. 71:1173-1215
Autor:
Nikos Labropoulos
Publikováno v:
Nonlinear Analysis, Differential Equations, and Applications ISBN: 9783030725624
In this article, the main objective is to prove the existence of non-radial nodal (sign-changing) solutions of the above problem (P), in the case where the exponent a is the critical of supercritical exponent, since the rest of the cases have been st
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8e41ca8e950152c6cff937c3e2188be3
https://doi.org/10.1007/978-3-030-72563-1_12
https://doi.org/10.1007/978-3-030-72563-1_12
Analytical approach of the symmetry: Sharp supercritical Hardy–Sobolev inequalities and applications
Autor:
Athanase Cotsiolis, Nikos Labropoulos
Publikováno v:
Nonlinear Analysis. 171:134-155
We consider the optimal Hardy–Sobolevinequality on smooth bounded symmetric domains of the Euclidean space without any assumption concerning the “shape” of the boundary (i.e. some convexity) confirming that the symmetry of a domain is an intrin
Autor:
Athanase Cotsiolis, Nikos Labropoulos
Publikováno v:
Journal of Mathematical Analysis and Applications. 448:841-863
In this paper, we establish the classical Hardy inequality in the solid torus and some variants of it. The general idea is to use the fact that Sobolev embeddings can be improved in the presence of symmetries. In all cases, using techniques that expl
Autor:
Athanase Cotsiolis, Nikos Labropoulos
Publikováno v:
Nonlinear Analysis. 198:111887
We consider a 3 -dimensional complete Riemannian manifold ( M , g ) with boundary and assuming that an optimal Sobolev or Hardy–Sobolev inequality holds with the same best constant as in the case of the solid torus T we investigate the relationship
Autor:
Nikos Labropoulos, Athanase Cotsiolis
Publikováno v:
Differential and Integral Inequalities ISBN: 9783030274061
In this paper, we present a short survey on the Hardy–Sobolev inequalities, considering the classical case and the fractional as well, by collecting some important known results in the area and some new results where the concept of symmetry plays a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e46985207579717996730465e10f8b8d
https://doi.org/10.1007/978-3-030-27407-8_6
https://doi.org/10.1007/978-3-030-27407-8_6
Autor:
Nikos Labropoulos, Athanase Cotsiolis
Publikováno v:
Contributions in Mathematics and Engineering ISBN: 9783319313153
In this article, we present some Sobolev-type inequalities on compact Riemannian manifolds with boundary, the data and the functions being invariant under the action of a compact subgroup of the isometry group. We investigate the best constants for t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f6f129ac5fa7868f23b8a84d6878161c
https://doi.org/10.1007/978-3-319-31317-7_3
https://doi.org/10.1007/978-3-319-31317-7_3
Autor:
Athanase Cotsiolis, Nikos Labropoulos
In this paper both we establish the best constants for the Nash inequalities on the standard unit sphere S n of R n + 1 , n ≥ 3 and we give answers on the existence of extremal functions on the corresponding problems. Also we study the problem of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce07d8fff0fb90332d9e8dba1d4d29ff