Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Nikos I. Karachalios"'
Autor:
Dirk Hennig, Nikos I. Karachalios
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 65:480-499
We prove the existence of exponentially and superexponentially localized breather solutions for discrete nonlinear Klein–Gordon systems. Our approach considers $d$-dimensional infinite lattice models with general on-site potentials and interaction
Autor:
Nikos I. Karachalios, Dirk Hennig
We prove the existence of periodic travelling wave solutions for general discrete nonlinear Klein-Gordon systems, considering both cases of hard and soft on-site potentials. In the case of hard on-site potentials we implement a fixed point theory app
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::47582b1d045bf4c2154da763f373a00f
https://doi.org/10.22541/au.167162064.46880969/v1
https://doi.org/10.22541/au.167162064.46880969/v1
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
While the Ablowitz-Ladik lattice is integrable, the Discrete Nonlinear Schrödinger equation, which is more significant for physical applications, is not. We prove closeness of the solutions of both systems in the sense of a “continuous dependence
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::599449f5c61a90e9cac3befe5a135813
Publikováno v:
Communications in Partial Differential Equations. 46:233-281
Considering the defocusing nonlinear Schrodinger equation (NLSE) in generic (bounded or unbounded) open sets U⊆Rn for n = 1, 2, and 3, we prove the regularity of weak, non-vanishing solutions at in...
Publikováno v:
Communications in Nonlinear Science and Numerical Simulation. 72:213-231
We discuss the finite-time collapse, also referred as blow-up, of the solutions of a discrete nonlinear Schrödinger (DNLS) equation incorporating linear and nonlinear gain and loss. Such an extended DNLS system appears in many inherently discrete ph
The Ablowitz-Ladik system, being one of the few integrable nonlinear lattices, admits a wide class of analytical solutions, ranging from exact spatially localised solitons to rational solutions in the form of the spatiotemporally localised discrete P
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fb461f487600da4c3ca0d2b2aa7576ed
Publikováno v:
Nonlinear Analysis, Differential Equations, and Applications ISBN: 9783030725624
We study possible dynamical scenarios associated with a higher-order Ginzburg–Landau-type equation. In particular, first we discuss and prove the existence of a limit set (attractor), capturing the long-time dynamics of the system. Then, we examine
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::23d6b503d122a3a21d33eaae3e39255b
https://doi.org/10.1007/978-3-030-72563-1_9
https://doi.org/10.1007/978-3-030-72563-1_9
Autor:
Dirk Hennig, Nikos I. Karachalios
Publikováno v:
Nonlinear Analysis. 218:112808
Autor:
Nikos I. Karachalios, Panayotis G. Kevrekidis, Jesús Cuevas-Maraver, J. Sullivan, Efstathios G. Charalampidis
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
idUS: Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
instname
idUS: Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
The Salerno model is a discrete variant of the celebrated nonlinear Schr¨odinger (NLS) equation interpolating between the discrete NLS (DNLS) equation and completely integrable Ablowitz-Ladik (AL) model by appropriately tuning the relevant homotopy
Autor:
Panayotis G. Kevrekidis, Nikos I. Karachalios, J. E. Allen, Dimitrios J. Frantzeskakis, V. Koukouloyannis, G. Abbas
In this work, a systematic study, examining the propagation of periodic and solitary waves along the magnetic field in a cold collision-free plasma, is presented. Employing the quasi-neutral approximation and the conservation of momentum flux and ene
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a050b893851b2c690e52c302b81c7a95