Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Nikolay Martynchuk"'
Publikováno v:
Indagationes Mathematicae. 32(1):193-223
The notion of monodromy was introduced by J.J. Duistermaat as the first obstruction to the existence of global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied since then and was shown to be non-trivial in
Publikováno v:
Communications in Mathematical Physics, 375(2). Nature Publishing Group
We show that Hamiltonian monodromy of an integrable two degrees of freedom system with a global circle action can be computed by applying Morse theory to the Hamiltonian of the system. Our proof is based on Takens’s index theorem, which specifies h
Autor:
Andreas Knauf, Nikolay Martynchuk
Publikováno v:
Ark. Mat. 58, no. 2 (2020), 333-356
The classical Morse theory proceeds by considering sublevel sets $f^{-1} (-\infty, a]$ of a Morse function $f : M \to \mathbb{R}$, where $M$ is a smooth finite-dimensional manifold. In this paper, we study the topology of the level sets $f^{-1} (a)$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::26a2011a05bb17e1bc5cb37997af1b62
https://projecteuclid.org/euclid.afm/1610766020
https://projecteuclid.org/euclid.afm/1610766020
Publikováno v:
Discrete and Computational Geometry
Discrete and Computational Geometry, Springer Verlag, 2017, ⟨10.1145/336154.336221⟩
Discrete and Computational Geometry, 2017, ⟨10.1145/336154.336221⟩
Discrete & computational geometry, 59(1), 226-237. SPRINGER
Discrete and Computational Geometry, Springer Verlag, 2017, ⟨10.1145/336154.336221⟩
Discrete and Computational Geometry, 2017, ⟨10.1145/336154.336221⟩
Discrete & computational geometry, 59(1), 226-237. SPRINGER
Delaunay has shown that the Delaunay complex of a finite set of points $P$ of Euclidean space $\mathbb{R}^m$ triangulates the convex hull of $P$, provided that $P$ satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be d
Autor:
Holger Waalkens, Nikolay Martynchuk
Publikováno v:
Regular & chaotic dynamics, 21(6), 697-706. MAIK NAUKA/INTERPERIODICA/SPRINGER
We consider Hamiltonian systems on (T*ℝ2, dq ∧ dp) defined by a Hamiltonian function H of the “classical” form H = p2/2 + V(q). A reasonable decay assumption V(q) → 0, ‖q‖ → ∞, allows one to compare a given distribution of initial c
Publikováno v:
Bollettino dell'Unione Matematica Italiana; Jun2023, Vol. 16 Issue 2, p381-396, 16p
Publikováno v:
Discrete & Computational Geometry; Jan2018, Vol. 59 Issue 1, p226-237, 12p
Autor:
Martynchuk, Nikolay, Waalkens, Holger
Publikováno v:
Regular & Chaotic Dynamics; Nov2016, Vol. 21 Issue 6, p697-706, 10p