Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Nikolay M. Sirakov"'
Publikováno v:
IEEE Access, Vol 10, Pp 31548-31560 (2022)
In this study, we propose a novel sparse representation learning method in the Quaternion Wavelet (QW) domain for multi-class image classification. The proposed method takes advantages from: i) the QW decomposition, which promotes sparsity and provid
Externí odkaz:
https://doaj.org/article/b2f01025d5974959a30d9fa1fe83070f
The objects’ features play significant role in the machine learning (ML) classification. The present paper proofs and validates that the shapes of vector field (VF) singular points (SPs) embedded into image objects may improve classification accura
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6db3135a56128114057171e9595afe2a
https://doi.org/10.21203/rs.3.rs-2862010/v1
https://doi.org/10.21203/rs.3.rs-2862010/v1
Publikováno v:
Signal, Image and Video Processing. 16:1721-1729
Melanoma is a deadly skin disease. Availability of digital skin lesion datasets ease the exploration of ample classification studies. Both theoretical and heuristics improvements are achieved thanks to these new datasets. Being one of many high-level
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7406e6c673637e71b8df1a68055fad2d
https://aperta.ulakbim.gov.tr/record/235916
https://aperta.ulakbim.gov.tr/record/235916
Autor:
Pravinumar G. Kandhare, Namasivayam Ambalavanan, Colm P. Travers, Waldemar A. Carlo, Nikolay M. Sirakov, Arie Nakhmani
Publikováno v:
SSRN Electronic Journal.
Autor:
Pravinkumar G. Kandhare, Namasivayam Ambalavanan, Colm P. Travers, Waldemar A. Carlo, Nikolay M. Sirakov, Arie Nakhmani
Publikováno v:
Biomedical Signal Processing and Control. 80:104371
Autor:
Alan Menter, Gregory A. Hosler, Lauren Dickson, Nikolay M. Sirakov, John W. Griffin, Mutlu Mete, Jillian Frieder
Publikováno v:
BIBE
This study reports results of a pilot study, in which pigmented skin lesions are automatically classified into four classes: benign, dysplastic nevus with mild atypia, dysplastic nevus with severe atypia, and melanoma. The pilot study enrolled subjec
Publikováno v:
SN Computer Science. 1
The present study illustrates a convolution neural network designed to classify skin lesion images to benign and malignant melanoma. The convolutional neural network consists of 4 convolution layers, rectified linear activation function and a softmax
Publikováno v:
Intelligent Systems Design and Applications ISBN: 9783540404262
Interest in the potential of digital images has increased enormously over the last few years. The internet collection of images has been estimated well in excess of 30 × 106. Examples of large subject-specific image collections include medical and e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5f334cec1e80efbfce31e09a0be2eedd
https://doi.org/10.1007/978-3-540-44999-7_36
https://doi.org/10.1007/978-3-540-44999-7_36
Autor:
Long H. Ngo
Publikováno v:
Image Processing [eess.IV]. Université Sorbonne Paris Nord, 2021. English
HAL
HAL
To be filled; La classification d'images est une discipline majeure en traitement d’images et en intelligence artificielle. La classification est d'une importance fondamentale pour qu'un système intelligent puisse exploiter et gérer efficacement
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c8c920a8b65f1b78f18e8b256946ba25
https://hal.archives-ouvertes.fr/tel-03324943
https://hal.archives-ouvertes.fr/tel-03324943