Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Nikolaos Nikolakis"'
Autor:
Vasilis Siatras, Emmanouil Bakopoulos, Panagiotis Mavrothalassitis, Nikolaos Nikolakis, Kosmas Alexopoulos
Publikováno v:
Information, Vol 15, Iss 6, p 337 (2024)
The emerging digitalization in today’s industrial environments allows manufacturers to store online knowledge about production and use it to make better informed management decisions. This paper proposes a multi-agent framework enhanced with digita
Externí odkaz:
https://doaj.org/article/6e77efd173424f4a96458432a0f40be5
Publikováno v:
Sensors, Vol 24, Iss 10, p 3215 (2024)
The production of multivariate time-series data facilitates the continuous monitoring of production assets. The modelling approach of multivariate time series can reveal the ways in which parameters evolve as well as the influences amongst themselves
Externí odkaz:
https://doaj.org/article/8b10f36f915844839f044fa8ca296e3d
Autor:
Aleksandr Sidorenko, William Motsch, Michael van Bekkum, Nikolaos Nikolakis, Kosmas Alexopoulos, Achim Wagner
Publikováno v:
Frontiers in Artificial Intelligence, Vol 6 (2023)
Volatility and uncertainty of today's value chains along with the market's demands for low-batch customized products mandate production systems to become smarter and more resilient, dynamically and even autonomously adapting to both external and inte
Externí odkaz:
https://doaj.org/article/d1f4c47f052548aa9273ce97dfbdf592
Autor:
Vasilis Siatras, Emmanouil Bakopoulos, Panagiotis Mavrothalassitis, Nikolaos Nikolakis, Kosmas Alexopoulos
Publikováno v:
Applied Sciences, Vol 13, Iss 17, p 9540 (2023)
Industry 4.0 (I4.0) aims at achieving the interconnectivity of multiple industrial assets from different hierarchical layers within a manufacturing environment. The Asset Administration Shell (AAS) is a pilar component of I4.0 for the digital represe
Externí odkaz:
https://doaj.org/article/f31982af823b4810b09eb047b1d47988
Autor:
Kosmas Alexopoulos, Paolo Catti, Giannis Kanellopoulos, Nikolaos Nikolakis, Athanasios Blatsiotis, Konstantinos Christodoulopoulos, Apostolos Kaimenopoulos, Efstathia Ziata
Publikováno v:
Applied Sciences, Vol 13, Iss 4, p 2575 (2023)
Advanced digital solutions are increasingly introduced into manufacturing systems to make them more intelligent. Intelligent Waste Management Systems in industries allow for data collection and analysis to make better-informed decisions, monitor and
Externí odkaz:
https://doaj.org/article/6d767d446aa94cc58c259b802166d3de
Publikováno v:
Applied Sciences, Vol 12, Iss 21, p 10788 (2022)
This work describes an approach for the Digital Transformation (DT) of a manufacturing SME in the mold production industry. The phases for changing from manual and non-adding value labor-intensive practices to digital and smart manufacturing configur
Externí odkaz:
https://doaj.org/article/d9da525190b14819ac803c78d56543de
Publikováno v:
Sensors, Vol 21, Iss 3, p 972 (2021)
Condition monitoring of industrial equipment, combined with machine learning algorithms, may significantly improve maintenance activities on modern cyber-physical production systems. However, data of proper quality and of adequate quantity, modeling
Externí odkaz:
https://doaj.org/article/e44b5ce1765142698bf4af41165eb91e
Publikováno v:
Applied Sciences, Vol 10, Iss 19, p 6827 (2020)
The field of prognostic maintenance aims at predicting the remaining time for a system or component to continue being used under the desired performance. This time is usually named as Remaining Useful Life (RUL). The current study proposes a novel ap
Externí odkaz:
https://doaj.org/article/019df536492149459a2e9a71738e6a71
Publikováno v:
Annals of DAAAM & Proceedings. 2022, Vol. 33, p547-550. 4p.
Autor:
Kosmas Alexopoulos, Thodoris Tsoukaladelis, Chrysa Dimitrakopoulou, Nikolaos Nikolakis, Amit Eytan
Publikováno v:
Procedia Computer Science. 217:403-412