Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Nikolaos K. Tavoularis"'
Publikováno v:
Comptes Rendus Mathematique. 340:205-208
On Rn, we prove the existence of sharp logarithmic Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. Any function f ∈ Hs(Rn) satisfies ∫Rn|f(x)|2ln(|f(x)|2‖f‖22)dx+(n+nslnα+lnsΓ(n2)Γ(n2s))‖f‖22
Publikováno v:
Journal of Mathematical Analysis and Applications. 295(1):225-236
We obtain sharp constants for Sobolev inequalities for higher order fractional derivatives. As an application, we give a new proof of a theorem of W. Beckner concerning conformally invariant higher-order differential operators on the sphere.