Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Nikolaj, Bak"'
A predictor model of treatment resistance in schizophrenia using data from electronic health records
Autor:
Giouliana Kadra-Scalzo, Daniela Fonseca de Freitas, Deborah Agbedjro, Emma Francis, Isobel Ridler, Megan Pritchard, Hitesh Shetty, Aviv Segev, Cecilia Casetta, Sophie E. Smart, Anna Morris, Johnny Downs, Søren Rahn Christensen, Nikolaj Bak, Bruce J. Kinon, Daniel Stahl, Richard D. Hayes, James H. MacCabe
Publikováno v:
PLoS ONE, Vol 17, Iss 9 (2022)
Objectives To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs. Methods We used the Least Absolut
Externí odkaz:
https://doaj.org/article/33cab6cd2e474f839d332b6455850c37
Autor:
Maria H. Jensen, Nikolaj Bak, Egill Rostrup, Mette Ø. Nielsen, Christos Pantelis, Birte Y. Glenthøj, Bjørn H. Ebdrup, Birgitte Fagerlund
Publikováno v:
Schizophrenia Research: Cognition, Vol 15, Iss , Pp 1-6 (2019)
Age has been shown to have an impact on both grey (GM) and white matter (WM) volume, with a steeper slope of age-related decline in schizophrenia compared to healthy controls. In schizophrenia, the relation between age and brain volume is further com
Externí odkaz:
https://doaj.org/article/b828c85a271a481ba3a5233210ab38d5
Autor:
Robert Eriksson, Brian V. Broberg, Pelle L. Ishøy, Nikolaj Bak, Ulrik B. Andersen, Niklas R. Jørgensen, Filip K. Knop, Bjørn H. Ebdrup
Publikováno v:
Frontiers in Psychiatry, Vol 9 (2019)
Background: Low bone mineral density (BMD) may constitute an underestimated comorbidity in schizophrenia patients undergoing long-term antipsychotic treatment. Glucagon-like peptide 1 (GLP-1) receptor agonists are antidiabetic drugs, which may also a
Externí odkaz:
https://doaj.org/article/96668b960e5b4b0eb02e97e74946f9ca
Autor:
Louise B. Glenthøj, Birgitte Fagerlund, Carsten Hjorthøj, Jens R.M. Jepsen, Nikolaj Bak, Tina D. Kristensen, Christina Wenneberg, Kristine Krakauer, David L. Roberts, Merete Nordentoft
Publikováno v:
Schizophrenia Research: Cognition, Vol 5, Iss C, Pp 21-27 (2016)
Objective: Patients at ultra-high risk (UHR) for psychosis show significant impairments in functioning. It is essential to determine which factors influence functioning, as it may have implications for intervention strategies. This study examined whe
Externí odkaz:
https://doaj.org/article/1e370f6dd3734b68bc105cf9a8ba15e1
Autor:
Daniela Fonseca de Freitas, Giouliana Kadra-Scalzo, Deborah Agbedjro, Emma Francis, Isobel Ridler, Megan Pritchard, Hitesh Shetty, Aviv Segev, Cecilia Casetta, Sophie E Smart, Johnny Downs, Søren Rahn Christensen, Nikolaj Bak, Bruce J Kinon, Daniel Stahl, James H MacCabe, Richard D Hayes
Publikováno v:
Journal of Psychopharmacology. 36:498-506
Background: A proportion of people with treatment-resistant schizophrenia fail to show improvement on clozapine treatment. Knowledge of the sociodemographic and clinical factors predicting clozapine response may be useful in developing personalised a
Autor:
Karen S. Ambrosen, Fanny Fredriksson, Simon Anhøj, Nikolaj Bak, Edwin van Dellen, Livia Dominicus, Cecilie K. Lemvigh, Mikkel E. Sørensen, Mette Ø. Nielsen, Kirsten B. Bojesen, Birgitte Fagerlund, Birte Y. Glenthøj, Bob Oranje, Lars K. Hansen, Bjørn H. Ebdrup
Publikováno v:
European Archives of Psychiatry and Clinical Neuroscience.
Schizophrenia is associated with aberrations in the Default Mode Network (DMN), but the clinical implications remain unclear. We applied data-driven, unsupervised machine learning based on resting-state electroencephalography (rsEEG) functional conne
Autor:
Daniela Fonseca de Freitas, Deborah Agbedjro, Giouliana Kadra-Scalzo, Emma Francis, Isobel Ridler, Megan Pritchard, Hitesh Shetty, Aviv Segev, Cecilia Casetta, Sophie E. Smart, Anna Morris, Johnny Downs, Søren Rahn Christensen, Nikolaj Bak, Bruce J. Kinon, Daniel Stahl, Richard D. Hayes, James H. MacCabe
Publikováno v:
Fonseca de Freitas, D, Agbedjro, D, Kadra-Scalzo, G, Francis, E, Ridler, I, Pritchard, M, Shetty, H, Segev, A, Casetta, C, Smart, S, Morris, A, Downs, J, Christensen, S R, Bak, N, Kinon, B J, Stahl, D, Hayes, R D & Maccabe, J 2022, ' Clinical correlates of early onset antipsychotic treatment resistance ', Journal of Psychopharmacology .
Background: There is evidence of heterogeneity within treatment-resistant schizophrenia (TRS), with some people not responding to antipsychotic treatment from illness onset and others becoming treatment-resistant after an initial response period. The
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d0aebd527f5bc1a6aada72de23235cf
https://kclpure.kcl.ac.uk/portal/en/publications/clinical-correlates-of-early-onset-antipsychotic-treatment-resistance(27e6bfa2-2720-4c92-acbb-96c59d918005).html
https://kclpure.kcl.ac.uk/portal/en/publications/clinical-correlates-of-early-onset-antipsychotic-treatment-resistance(27e6bfa2-2720-4c92-acbb-96c59d918005).html
Autor:
Nikolaj Bak, Lars K Hansen
Publikováno v:
PLoS ONE, Vol 11, Iss 10, p e0164464 (2016)
Missing data is a common problem in many research fields and is a challenge that always needs careful considerations. One approach is to impute the missing values, i.e., replace missing values with estimates. When imputation is applied, it is typical
Externí odkaz:
https://doaj.org/article/f43c180ab01945f98913c713841dc7b0
Autor:
Egill Rostrup, Martin W Skjerbæk, Birgitte Fagerlund, Christos Pantelis, Martin Christian Axelsen, Jonathan Foldager, Merete Osler, Louise Baruël Johansen, Mette Ødegaard Nielsen, Søren Christensen, Lars Arvastson, Lars Kai Hansen, Bjørn H Ebdrup, Bob Oranje, Jayachandra Mitta Raghava, Birte Glenthøj, Bruce J Kinon, Nikolaj Bak, Karen Sando Ambrosen
Publikováno v:
Translational Psychiatry, Vol 10, Iss 1, Pp 1-13 (2020)
Translational Psychiatry
Ambrosen, K S, Skjerbæk, M W, Foldager, J, Axelsen, M C, Bak, N, Arvastson, L, Christensen, S R, Johansen, L B, Raghava, J M, Oranje, B, Rostrup, E, Nielsen, M, Osler, M, Fagerlund, B, Pantelis, C, Kinon, B J, Glenthøj, B Y, Hansen, L K & Ebdrup, B H 2020, ' A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data ', Translational Psychiatry, vol. 10, no. 1, 276 . https://doi.org/10.1038/s41398-020-00962-8
Ambrosen, K S, Skjerbæk, M W, Foldager, J, Axelsen, M C, Bak, N, Arvastson, L, Christensen, S R, Johansen, L B, Raghava, J M, Oranje, B, Rostrup, E, Nielsen, M, Osler, M, Fagerlund, B, Pantelis, C, Kinon, B J, Glenthøj, B Y, Hansen, L K & Ebdrup, B H 2020, ' A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data ', Translational Psychiatry, vol. 10, no. 1, 276, pp. S34–S35 . https://doi.org/10.1038/s41398-020-00962-8
Translational Psychiatry
Ambrosen, K S, Skjerbæk, M W, Foldager, J, Axelsen, M C, Bak, N, Arvastson, L, Christensen, S R, Johansen, L B, Raghava, J M, Oranje, B, Rostrup, E, Nielsen, M, Osler, M, Fagerlund, B, Pantelis, C, Kinon, B J, Glenthøj, B Y, Hansen, L K & Ebdrup, B H 2020, ' A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data ', Translational Psychiatry, vol. 10, no. 1, 276 . https://doi.org/10.1038/s41398-020-00962-8
Ambrosen, K S, Skjerbæk, M W, Foldager, J, Axelsen, M C, Bak, N, Arvastson, L, Christensen, S R, Johansen, L B, Raghava, J M, Oranje, B, Rostrup, E, Nielsen, M, Osler, M, Fagerlund, B, Pantelis, C, Kinon, B J, Glenthøj, B Y, Hansen, L K & Ebdrup, B H 2020, ' A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data ', Translational Psychiatry, vol. 10, no. 1, 276, pp. S34–S35 . https://doi.org/10.1038/s41398-020-00962-8
The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias an
Autor:
Armida Mucci, Mette Ødegaard Nielsen, Arsime Demjaha, Peter Allerup, René S. Kahn, Stefan Leucht, Paola Bucci, Bjørn H Ebdrup, Silvana Galderisi, Philip McGuire, Paola Dazzan, Lone Baandrup, Nikolaj Bak, Covadonga M. Díaz-Caneja, Signe Düring, Birte Glenthøj, Celso Arango
Publikováno v:
Baandrup, L, Allerup, P, Nielsen, M Ø, Bak, N, Düring, S W, Leucht, S, Galderisi, S, Mucci, A, Bucci, P, Arango, C, Díaz-Caneja, C M, Dazzan, P, McGuire, P, Demjaha, A, Ebdrup, B H, Kahn, R S & Glenthøj, B Y 2020, ' Rasch analysis of the PANSS negative subscale and exploration of negative symptom trajectories in first-episode schizophrenia : data from the OPTiMiSE trial ', Psychiatry Research, vol. 289, 112970 . https://doi.org/10.1016/j.psychres.2020.112970
The observed heterogeneity in negative symptom treatment response may be partly attributable to inadequate measurement tools or limitations in methods of analysis. Previous Item Response Theory models of the Positive and Negative Syndrome Scale (PANS
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40f78e9708ca0a80aac0c2f342b02f6b
http://hdl.handle.net/11591/431138
http://hdl.handle.net/11591/431138