Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Nikolai Gordeev"'
Publikováno v:
Вестник Северо-Кавказского федерального университета, Vol 0, Iss 1, Pp 107-110 (2022)
The article discusses the formation of University student's motivation for self-employment on physical culture, which not only promotes the best mastering ofthe program and, therefore, improve physical development, and improve the health of students,
Externí odkaz:
https://doaj.org/article/b4099a09d6f94f8ea7c15ec72d5083d4
Publikováno v:
Вестник Северо-Кавказского федерального университета, Vol 0, Iss 4, Pp 178-180 (2022)
This article considers the problem of physical training of employees of internal Affairs bodies, as a component of professional training of police officers. Sets out the main provisions for use by the police of physical force in accordance with artic
Externí odkaz:
https://doaj.org/article/36be36470cf3461486c032c1564665db
Autor:
F. Gnutov, Nikolai Gordeev
Publikováno v:
Archiv der Mathematik. 114:609-618
T. Bandman and Yu. G. Zarhin have proved that for every word $$w \in F_n, w\notin F_n^2$$, the corresponding word map $${\tilde{w}}: \mathrm {PGL}_2^n(K)\rightarrow \mathrm {PGL}_2(K)$$ is surjective if K is an algebraically closed field of character
Autor:
Nikolai Gordeev, E. A. Egorchenkova
Publikováno v:
Journal of Mathematical Sciences. 243:561-572
The word maps $$ \tilde{w}:\kern0.5em {\mathrm{GL}}_m{(D)}^{2k}\to {\mathrm{GL}}_n(D) $$ and $$ \tilde{w}:\kern0.5em {D}^{\ast 2k}\to {D}^{\ast } $$ for a word $$ w=\prod \limits_{i=1}^k\left[{x}_i,{y}_i\right], $$ where D is a division algebra over
Autor:
Nikolai Gordeev, E. Egorchenkova
Publikováno v:
Archiv der Mathematik. 112:113-122
Let $$w = w(x_1, \ldots , x_n)$$ be a non-trivial word of n-variables. The word map on a group G that corresponds to w is the map $$\widetilde{w}: G^n\rightarrow G$$ where $$\widetilde{w}((g_1, \ldots , g_n)) := w(g_1, \ldots , g_n)$$ for every seque
Publikováno v:
Journal of Algebra. 500:390-424
We consider word maps and word maps with constants on a simple algebraic group G. We present results on the images of such maps, in particular, we prove a theorem on the dominance of “general” word maps with constants, which can be viewed as an a
Publikováno v:
Russian Mathematical Surveys
This paper contains a survey of recent developments in investigation of word equations in simple matrix groups and polynomial equations in simple (associative and Lie) matrix algebras along with some new results on the image of word maps on algebraic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4e1abeab06ce0519876db9a1be3057e
http://arxiv.org/abs/1808.02303
http://arxiv.org/abs/1808.02303
Autor:
Nikolai Gordeev
Publikováno v:
Journal of Algebra. 425:215-244
Let G be a simple algebraic group defined over an algebraically closed field K and let G = G ( K ) . We consider here the problem when an element g ∈ G can be presented in the form g = e n ( g 1 , g 2 ) : = [ g 1 , [ g 1 , ⋯ [ g 1 ︸ n -times ,
Publikováno v:
International Journal of Algebra and Computation
We extend Borel’s theorem on the dominance of word maps from semisimple algebraic groups to some perfect groups. In another direction, we generalize Borel’s theorem to some words with constants. We also consider the surjectivity problem for parti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::74bd919048d323bcd7b991e80d03fca9
http://arxiv.org/abs/1801.00381
http://arxiv.org/abs/1801.00381
Autor:
Nikolai Gordeev, Erich W. Ellers
Publikováno v:
Journal of Mathematical Sciences. 202:395-403
Let G = G(K), where G is a simple and simply connected algebraic group that is defined and quasi-split over a field K. Commutators in G with some regular elements are considered. In particular, it is proved (under some additional condition) that ever