Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Nikola Stoilov"'
Publikováno v:
Studies in Applied Mathematics. 149:76-94
We present a detailed numerical study of the stability under periodic perturbations of line solitons of two-dimensional, generalized Zakharov-Kuznetsov equations with various power nonlinearities. In the $L^{2}$-subcritical case, in accordance with a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::490322a30a790584c9accdf2b6ec89a7
http://arxiv.org/abs/2204.11646
http://arxiv.org/abs/2204.11646
Publikováno v:
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena, Elsevier, 2021, 423, pp.132913. ⟨10.1016/j.physd.2021.132913⟩
Physica D: Nonlinear Phenomena, Elsevier, 2021, 423, pp.132913. ⟨10.1016/j.physd.2021.132913⟩
International audience; We present a detailed numerical study of solutions to the Zakharov-Kuznetsov equation in three spatial dimensions. The equation is a three-dimensional generalization of the Korteweg-de Vries equation, though, not completely in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66a17227cb27adf484400a5d70992a24
https://hal.archives-ouvertes.fr/hal-03303233
https://hal.archives-ouvertes.fr/hal-03303233
Autor:
Christian Klein, Nikola Stoilov
Publikováno v:
Letters in Mathematical Physics
Letters in Mathematical Physics, Springer Verlag, 2021, 111 (5), ⟨10.1007/s11005-021-01454-6⟩
Letters in Mathematical Physics, Springer Verlag, 2021, 111 (5), ⟨10.1007/s11005-021-01454-6⟩
We present a numerical approach to study solutions to the dispersionless Kadomtsev–Petviashvili (dKP) equation on $${\mathbb {R}}\times {\mathbb {T}}$$ . The dependence on the coordinate x is considered on the compactified real line, and the depend
Publikováno v:
Numerical Algorithms
Numerical Algorithms, 2020, 84 (1), pp.1-35. ⟨10.1007/s11075-019-00741-7⟩
Numerical Algorithms, Springer Verlag, 2020, 84 (1), pp.1-35. ⟨10.1007/s11075-019-00741-7⟩
Numerical Algorithms, 2020, 84 (1), pp.1-35. ⟨10.1007/s11075-019-00741-7⟩
Numerical Algorithms, Springer Verlag, 2020, 84 (1), pp.1-35. ⟨10.1007/s11075-019-00741-7⟩
International audience; We present a multidomain spectral approach for Fuchsian ordinary differential equations in the particular case of the hypergeometric equation. Our hybrid approach uses Frobenius’ method and Moebius transformations in the vic
Autor:
Christian Klein, Nikola Stoilov
Publikováno v:
Journal of Computational Physics
Journal of Computational Physics, Elsevier, 2021, 434, pp.110149. ⟨10.1016/j.jcp.2021.110149⟩
Journal of Computational Physics, Elsevier, 2021, 434, pp.110149. ⟨10.1016/j.jcp.2021.110149⟩
We present a multidomain spectral approach with an exterior compactified domain for the Maxwell equations for monochromatic fields. The Sommerfeld radiation condition is imposed exactly at infinity being a finite point on the numerical grid. As an ex
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dafc2d091341da10cb517e6d1920d91d
https://hal.archives-ouvertes.fr/hal-03283204
https://hal.archives-ouvertes.fr/hal-03283204
Publikováno v:
Partial Differential Equations and Applications. 2
A multi-domain spectral method is presented to compute the Hilbert transform on the whole compactified real line, with a special focus on piece-wise analytic functions and functions with algebraic decay towards infinity. Several examples of these and
Publikováno v:
Journal of Nonlinear Science
Journal of Nonlinear Science, Springer Verlag, 2021, 31 (2), pp.36. ⟨10.1007/s00332-021-09680-x⟩
Journal of Nonlinear Science, Springer Verlag, 2021, 31 (2), pp.36. ⟨10.1007/s00332-021-09680-x⟩
We present a detailed numerical study of solutions to the (generalized) Zakharov–Kuznetsov equation in two spatial dimensions with various power nonlinearities. In the $$L^{2}$$ -subcritical case, numerical evidence is presented for the stability o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ede7b16d72bd8ed1f9aba81bd92afc77
https://hal.archives-ouvertes.fr/hal-03303398
https://hal.archives-ouvertes.fr/hal-03303398
Autor:
Christian Klein, Nikola Stoilov
Publikováno v:
Studies in Applied Mathematics
Studies in Applied Mathematics, Wiley-Blackwell, 2020, ⟨10.1111/sapm.12306⟩
Studies in Applied Mathematics, Wiley-Blackwell, 2020, ⟨10.1111/sapm.12306⟩
We generalise a previously published approach based on a multi-domain spectral method on the whole real line in two ways: firstly, a fully explicit 4th order method for the time integration, based on a splitting scheme and an implicit Runge--Kutta me
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f310030c295b45f855157bafe958bf77
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02570854
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02570854
Publikováno v:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, The, 2020, 476 (2239), pp.20190864. ⟨10.1098/rspa.2019.0864⟩
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, The, 2020, 476 (2239), pp.20190864. ⟨10.1098/rspa.2019.0864⟩
We present an efficient high-precision numerical approach for Davey–Stewartson (DS) II type equa- tions, treating initial data from the Schwartz class of smooth, rapidly decreasing functions. As with previous approaches, the presented code uses dis