Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Niko Naumann"'
Publikováno v:
Selecta Mathematica, New Series
Selecta Mathematica
Selecta Mathematica
We prove the height two case of a conjecture of Hovey and Strickland that provides a $K(n)$-local analogue of the Hopkins--Smith thick subcategory theorem. Our approach first reduces the general conjecture to a problem in arithmetic geometry posed by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c67fe47a29e1ddb3c20072cc8d0513f1
https://hdl.handle.net/11250/3054035
https://hdl.handle.net/11250/3054035
Publikováno v:
Clausen, D, Mathew, A, Naumann, N & Noel, J 2020, ' Descent in algebraic K-theory and a conjecture of Ausoni-Rognes ', Journal of the European Mathematical Society, vol. 22, no. 4, pp. 1149-1200 . https://doi.org/10.4171/JEMS/942
Let $A \to B$ be a $G$-Galois extension of rings, or more generally of $\mathbb{E}_\infty$-ring spectra in the sense of Rognes. A basic question in algebraic $K$-theory asks how close the map $K(A) \to K(B)^{hG}$ is to being an equivalence, i.e., how
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e32d6e2e5384e70885a742b252b30b62
https://curis.ku.dk/portal/da/publications/descent-in-algebraic-ktheory-and-a-conjecture-of-ausonirognes(c28ca87c-85e2-427a-b5eb-ac848eda9b01).html
https://curis.ku.dk/portal/da/publications/descent-in-algebraic-ktheory-and-a-conjecture-of-ausonirognes(c28ca87c-85e2-427a-b5eb-ac848eda9b01).html
Autor:
Niko Naumann, Johannes Sprang
Publikováno v:
Mathematische Zeitschrift. 292:151-181
Building on results of Ando, Hopkins and Rezk, we show the existence of uncountably many $${\mathbb {E}}_\infty $$ -String orientations of real K-theory KO and of topological modular forms tmf, generalizing the $$\hat{A}$$ - (resp. the Witten) genus.
Autor:
Charanya Ravi, Niko Naumann
Publikováno v:
Ann. K-Theory 5, no. 1 (2020), 141-158
If [math] is a henselian pair with an action of a finite group [math] and [math] is an integer coprime to [math] such that [math] , then the reduction map of mod- [math] equivariant [math] -theory spectra ¶ K G ( R ) ∕ n → ≃ K G ( R ∕ I )
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a74d062bff260fc474501d17ee259660
Publikováno v:
Geom. Topol. 23, no. 2 (2019), 541-636
Let $G$ be a finite group. To any family $\mathscr{F}$ of subgroups of $G$, we associate a thick $\otimes$-ideal $\mathscr{F}^{\mathrm{Nil}}$ of the category of $G$-spectra with the property that every $G$-spectrum in $\mathscr{F}^{\mathrm{Nil}}$ (wh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f9bc9b4fdbc6b3e8acd37ca8dcda1ed
https://projecteuclid.org/euclid.gt/1555466424
https://projecteuclid.org/euclid.gt/1555466424
Autor:
Markus Hausmann, Nathaniel Stapleton, Justin Noel, Niko Naumann, Tobias Barthel, Thomas Nikolaus
Publikováno v:
Inventiones Mathematicae
For a finite abelian group $A$, we determine the Balmer spectrum of $\mathrm{Sp}_A^{\omega}$, the compact objects in genuine $A$-spectra. This generalizes the case $A=\mathbb{Z}/p\mathbb{Z}$ due to Balmer and Sanders \cite{Balmer-Sanders}, by establi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::756367d08df2bd17bcae6a1e4cd8c5a7
Autor:
Ulrich Bunke, Niko Naumann
Publikováno v:
Bulletin des Sciences Mathématiques. 138:912-970
Using spectral invariants of Dirac operators we construct a secondary version of the Witten genus, namely a bordism invariant of string manifolds in dimensions 4 m − 1 . We prove a secondary index theorem which relates this global-analytic construc
Publikováno v:
Journal of Homotopy and Related Structures. 10:333-346
We show that algebraic \({\textit{K}}\)-theory \(\mathsf {KGL}\), the motivic Adams summand \(\mathsf {ML}\) and their connective covers acquire unique \(E_{\infty }\) structures refining naive multiplicative structures in the motivic stable homotopy
Autor:
Niko Naumann, Markus Spitzweck
Publikováno v:
Journal of K-theory. 7:527-539
We prove the following result announced by V. Voevodsky. If S is a finite dimensional noetherian scheme such that S = ∪αSpec(Rα) for countable rings Rα, then the stable motivic homotopy category over S satisfies Brown representability.
Publikováno v:
Compositio Mathematica. 147:235-262
Lazard showed in his seminal work "Groupes analytiques $p$-adiques" that for rational coefficients continuous group cohomology of $p$-adic Lie-groups is isomorphic to Lie-algebra cohomology. We refine this result in two directions: firstly we extend