Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Niederkrüger, Klaus."'
Autor:
Niederkruger, Klaus
Publikováno v:
Algebr. Geom. Topol. 6 (2006) 2473-2508
In this article, we give a first prototype-definition of overtwistedness in higher dimensions. According to this definition, a contact manifold is called "overtwisted" if it contains a "plastikstufe", a submanifold foliated by the contact structure i
Externí odkaz:
http://arxiv.org/abs/math/0607610
Autor:
Niederkrüger, Klaus, Chiang, River
We show that the germ of the contact structure surrounding a certain kind of convex hypersurfaces is overtwisted. We then find such hypersurfaces close to any plastikstufe with toric core so that these imply overtwistedness. All proofs in this articl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::48dbeeaa1bb83cc972e89796faa8fcc1
https://hal.archives-ouvertes.fr/hal-03224778
https://hal.archives-ouvertes.fr/hal-03224778
Publikováno v:
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2019, 19 (7), pp.3409-3451. ⟨10.2140/agt.2019.19.3409⟩
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2019, 19 (7), pp.3409-3451. ⟨10.2140/agt.2019.19.3409⟩
International audience; The Bourgeois construction associates to every contact open book on a manifold V a contact structure on V×T². We study in this article some of the properties of V that are inherited by V×T² and some that are not.Giroux has
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2aacc2c1308a3190dc316d4c3ffa48b6
https://hal.archives-ouvertes.fr/hal-01702441
https://hal.archives-ouvertes.fr/hal-01702441
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Massot, Patrick1 patrick.massot@math.u-psud.fr, Niederkrüger, Klaus2 niederkr@math.univ-toulouse.fr, Wendl, Chris3 c.wendl@ucl.ac.uk
Publikováno v:
Inventiones Mathematicae. May2013, Vol. 192 Issue 2, p287-373. 87p.
Autor:
Niederkrüger, Klaus
These notes are based on a course that took place at the Universit\'e de Nantes in June 2011 during the "Trimester on Contact and Symplectic Topology". We will explain how holomorphic curves can be used to study symplectic fillings of a given contact
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b28229549dd4089a30fe9cb76dc54926
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Niederkrüger, Klaus
The main result in this thesis is the classification of SO(3)-actions on contact 5-manifolds. Using properties of the moment map, one can reduce the manifold to a 3-dimensional contact manifold with an S^1-action. This works everywhere outside of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______199::dbaafdc56cdcf725bc748bf4ccf6e92e
https://kups.ub.uni-koeln.de/1501/
https://kups.ub.uni-koeln.de/1501/
Autor:
Niederkrüger, Klaus
In this paper the 5-dimensional contact SO(3)-manifolds are classified up to equivariant contactomorphisms. The construction of such manifolds with singular orbits requires the use of generalized Dehn twists. We show as an application that all simply
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e82e3be361d95e7be8149db7013b9ed7