Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Nicole Mestrano"'
Autor:
Nicole Mestrano, Carlos Simpson
The moduli space $M(c_2)$, of stable rank two vector bundles of degree one on a very general quintic surface $X\subset {\mathbb P}^3$, is irreducible for all $c_2\geq 4$ and empty otherwise.
Comment: Adds a review of initial cases
Comment: Adds a review of initial cases
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::18edcedc54a739a5adafa2badab2ba53
https://hal.archives-ouvertes.fr/hal-00788692v4/document
https://hal.archives-ouvertes.fr/hal-00788692v4/document
Autor:
Carlos Simpson, Nicole Mestrano
Publikováno v:
International Journal of Mathematics
International Journal of Mathematics, World Scientific Publishing, 2011, 22 (6), pp.789-836. ⟨10.1142/S0129167X11007045⟩
International Journal of Mathematics, World Scientific Publishing, 2011, 22 (6), pp.789-836. ⟨10.1142/S0129167X11007045⟩
In this note we consider the moduli space of stable bundles of rank two on a very general quintic surface. We study the potentially obstructed points of the moduli space via the spectral covering of a twisted endomorphism. This analysis leads to gene
Autor:
Carlos Simpson, Nicole Mestrano
Publikováno v:
Development of Moduli Theory — Kyoto 2013, O. Fujino, S. Kondō, A. Moriwaki, M. Saito and K. Yoshioka, eds. (Tokyo: Mathematical Society of Japan, 2016)
Development of Moduli Theory---Kyoto 2013
Development of Moduli Theory---Kyoto 2013, 69, pp.77-172, 2016, Advanced Studies in Pure Mathematics
Development of Moduli Theory---Kyoto 2013
Development of Moduli Theory---Kyoto 2013, 69, pp.77-172, 2016, Advanced Studies in Pure Mathematics
International audience; We survey classical and recent developments in the theory of moduli spaces of sheaves on projective varieties
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf0ac60568846c097653f7b9ad6cc773
https://projecteuclid.org/euclid.aspm/1538622430
https://projecteuclid.org/euclid.aspm/1538622430
Autor:
Carlos Simpson, Nicole Mestrano
Publikováno v:
Kyoto Journal of Mathematics
Kyoto Journal of Mathematics, Duke University Press, 2013, 53 (1), pp.155-195
Kyoto J. Math. 53, no. 1 (2013), 155-195
Kyoto Journal of Mathematics, Duke University Press, 2013, 53 (1), pp.155-195
Kyoto J. Math. 53, no. 1 (2013), 155-195
International audience; In this paper we continue our study of the moduli space of stable bundles of rank two and degree $1$ on a very general quintic surface. The goal in this paper is to understand the irreducible components of the moduli space in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::21bbe0991a868a964c6e608d78c7d017
https://hal.archives-ouvertes.fr/hal-00669217
https://hal.archives-ouvertes.fr/hal-00669217
Autor:
Nicole Mestrano
Publikováno v:
Inventiones Mathematicae. 87:365-376
Autor:
Nicole Mestrano
Publikováno v:
Annales de l’institut Fourier. 35:217-249