Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Nicolas Wilmet"'
Autor:
Nicolas Wilmet, Augusto C. Ponce
Publikováno v:
Advanced Nonlinear Studies, Vol. 10, no.2, p. 459–475 (2020)
We prove the Hopf boundary point lemma for solutions of the Dirichlet problem involving the Schrödinger operator - Δ + V {-\Delta+V} with a nonnegative potential V which merely belongs to L loc 1 ( Ω ) {L_{\mathrm{loc}}^{1}(\Omega)} . More pre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b3a30cbeac042039fa7a73a3576d9fc
https://hdl.handle.net/2078.1/235057
https://hdl.handle.net/2078.1/235057
Autor:
Nicolas Wilmet, Augusto C. Ponce
Publikováno v:
Journal of Differential Equations, Vol. 263, p. 3581-3610 (2017)
We study the existence of solutions of the Dirichlet problem for the Schroedinger operator with measure data $$ \left\{ \begin{alignedat}{2} -��u + Vu & = ��&& \quad \text{in } ��,\\ u & = 0 && \quad \text{on } \partial ��. \end{align
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0775b87617853795370efa044c4c2635
http://arxiv.org/abs/1705.03718
http://arxiv.org/abs/1705.03718
Autor:
Nicolas Wilmet, Augusto C. Ponce
We study the minimization of the cost functional \[ F(\mu) = \lVert u - u_d \rVert_{L^p(\Omega)} + \alpha \lVert \mu \rVert_{\mathcal{M}(\Omega)}, \] where the controls $\mu$ are taken in the space of finite Borel measures and $u \in W_0^{1, 1}(\Omeg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7d41ad470e96b422399c84ac2073868f