Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Nicolas Sourbier"'
Autor:
Nicolas Sourbier, Karol Desnos, Thomas Guyet, Frédéric Majorczyk, Olivier Gesny, Maxime Pelcat
Publikováno v:
Journal of Signal Processing Systems
Journal of Signal Processing Systems, 2022, ⟨10.1007/s11265-021-01728-1⟩
Journal of Signal Processing Systems, 2022, Design and Architectures for Signal and Image Processing 2021, 94 (7), pp.753-770. ⟨10.1007/s11265-021-01728-1⟩
Journal of Signal Processing Systems, 2022, ⟨10.1007/s11265-021-01728-1⟩
Journal of Signal Processing Systems, 2022, Design and Architectures for Signal and Image Processing 2021, 94 (7), pp.753-770. ⟨10.1007/s11265-021-01728-1⟩
International audience; The fast improvement of Machine-Learning (ML) methods gives rise to new attacks in Information System (IS). Simultaneously, ML also creates new opportunities for network intrusion detection. Early network intrusion detection i
Publikováno v:
Workshop on Design and Architectures for Signal and Image Processing (DASIP)
Workshop on Design and Architectures for Signal and Image Processing (DASIP), Jan 2021, Budapest, Hungary. ⟨10.1145/3441110.3441575⟩
DASIP
Workshop on Design and Architectures for Signal and Image Processing (DASIP), Jan 2021, Budapest, Hungary. ⟨10.1145/3441110.3441575⟩
DASIP
Tangled Program Graph (TPG) is a reinforcement learning technique based on genetic programming concepts. On state-of-the-art learning environments, TPGs have been shown to offer comparable competence with Deep Neural Networks (DNNs), for a fraction o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66b7f091b954fe1796c0c512951a2577
Autor:
Olivier Gesny, Adrien Quemat, Tudy Gourmelen, Pierre-Marie Satre, Bertrand Virfollet, Julien Roussel, Robin de Saint, Nicolas Sourbier, Maxime Durand, Maxime Pelcat, Pierre Delesques
Publikováno v:
HAL
[Rapport de recherche] SILICOM; INSA RENNES; IETR/INSA Rennes. 2021
[Rapport de recherche] SILICOM; INSA RENNES; IETR/INSA Rennes. 2021
De nombreuses méthodes IA supervisées ou non supervisées sont utilisées pour la détection d'anomalies et d'attaques. Pour apporter davantage de contexte et d'interprétabilitéà l'analyste SOC, cet article introduit une nouvelle approche d'appr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::546981584d3f951f9c56aacf8145fec2
https://hal.archives-ouvertes.fr/hal-03374007
https://hal.archives-ouvertes.fr/hal-03374007