Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Nicolas Jouvin"'
Publikováno v:
Computational Statistics
Computational Statistics, Springer Verlag, In press, ⟨10.1007/s00180-020-01008-9⟩
Computational Statistics, In press, ⟨10.1007/s00180-020-01008-9⟩
Computational Statistics, Springer Verlag, In press, ⟨10.1007/s00180-020-01008-9⟩
Computational Statistics, In press, ⟨10.1007/s00180-020-01008-9⟩
Count data is becoming more and more ubiquitous in a wide range of applications, with datasets growing both in size and in dimension. In this context, an increasing amount of work is dedicated to the construction of statistical models directly accoun
Publikováno v:
Statistics and Computing
Statistics and Computing, Springer Verlag (Germany), 2021, ⟨10.1007/s11222-021-10018-6⟩
Statistics and Computing, 2021, 31, ⟨10.1007/s11222-021-10018-6⟩
Statistics and Computing, Springer Verlag (Germany), 2021, ⟨10.1007/s11222-021-10018-6⟩
Statistics and Computing, 2021, 31, ⟨10.1007/s11222-021-10018-6⟩
High-dimensional data clustering has become and remains a challenging task for modern statistics and machine learning, with a wide range of applications. We consider in this work the powerful discriminative latent mixture model, and we extend it to t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a034dca65459026a31008024e00d5d2f
https://hal.archives-ouvertes.fr/hal-03047930
https://hal.archives-ouvertes.fr/hal-03047930
Publikováno v:
Advances in Data Analysis and Classification
Advances in Data Analysis and Classification, Springer Verlag, In press, ⟨10.1007/s11634-021-00440-z⟩
Advances in Data Analysis and Classification, 2021, 15, pp.957-986. ⟨10.1007/s11634-021-00440-z⟩
Advances in Data Analysis and Classification, Springer Verlag, In press, ⟨10.1007/s11634-021-00440-z⟩
Advances in Data Analysis and Classification, 2021, 15, pp.957-986. ⟨10.1007/s11634-021-00440-z⟩
Finding a set of nested partitions of a dataset is useful to uncover relevant structure at different scales, and is often dealt with a data-dependent methodology. In this paper, we introduce a general two-step methodology for model-based hierarchical
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c3aaac0317b0877e0de7aa32bf54ac42
https://hal.archives-ouvertes.fr/hal-02530705
https://hal.archives-ouvertes.fr/hal-02530705