Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Nicolas Collignon"'
Autor:
Nicolas Collignon, Benedek Rozemberczki, Rik Sarkar, Yixuan He, Paul Scherer, Alexander Riedel, Maria Astefanoaei, Guzmán López, Ferenc Béres, George Panagopoulos, Oliver Kiss
Publikováno v:
Rozemberczki, B, Scherer, P, He, Y, Panagopoulos, G, Riedel, A, Astefanoaei, M S, Kiss, O, Béres, F, López, G, Collignon, N & Sarkar, R 2021, PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models . in G Demartini, G Zuccon, J S Culpepper, Z Huang & H Tong (eds), CIKM '21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1-5, 2021 . Association for Computing Machinery, pp. 4564-4573 . https://doi.org/10.1145/3459637.3482014
CIKM
Rozemberczki, B, Scherer, P, He, Y, Panagopoulos, G, Riedel, A, Astefanoaei, M, Kiss, O, Beres, F, López, G, Collignon, N & Sarkar, R 2021, PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models . in CIKM '21: Proceedings of the 30th ACM International Conference on Information & Knowledge Management . Association for Computing Machinery (ACM), pp. 4564–4573, 30th ACM International Conference on Information and Knowledge Management, Gold Coast, Queensland, Australia, 1/11/21 . https://doi.org/10.1145/3459637.3482014
CIKM
Rozemberczki, B, Scherer, P, He, Y, Panagopoulos, G, Riedel, A, Astefanoaei, M, Kiss, O, Beres, F, López, G, Collignon, N & Sarkar, R 2021, PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models . in CIKM '21: Proceedings of the 30th ACM International Conference on Information & Knowledge Management . Association for Computing Machinery (ACM), pp. 4564–4573, 30th ACM International Conference on Information and Knowledge Management, Gold Coast, Queensland, Australia, 1/11/21 . https://doi.org/10.1145/3459637.3482014
We present PyTorch Geometric Temporal a deep learning framework combining state-of-the-art machine learning algorithms for neural spatiotemporal signal processing. The main goal of the library is to make temporal geometric deep learning available for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8003fd3766bbede9435be31164a1b04e
https://pure.itu.dk/portal/da/publications/da6e2236-eb6c-4468-918d-4907c16c869b
https://pure.itu.dk/portal/da/publications/da6e2236-eb6c-4468-918d-4907c16c869b
Autor:
Maria Astefanoaei, Nicolas Collignon
Musical genres are inherently ambiguous and difficult to define. Even more so is the task of establishing how genres relate to one another. Yet, genre is perhaps the most common and effective way of describing musical experience. The number of possib
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9591f1c082f7bf33c1008d933cc1d159
https://doi.org/10.31234/osf.io/e2qyd
https://doi.org/10.31234/osf.io/e2qyd