Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Nicolaie Lungu"'
Publikováno v:
Mathematics, Vol 10, Iss 15, p 2556 (2022)
In this paper, we define and study Hyers–Ulam stability of order 1 for Euler’s equation and Hyers–Ulam stability of order m−1 for the Euler–Poisson equation in the calculus of variations in two special cases, when these equations have the f
Externí odkaz:
https://doaj.org/article/2fb45e6760734dceb53cd6f4acd17654
Publikováno v:
Mathematics, Vol 10, Iss 13, p 2183 (2022)
In this paper, we study Hyers–Ulam and generalized Hyers–Ulam–Rassias stability of a system of hyperbolic partial differential equations using Gronwall’s lemma and Perov’s theorem.
Externí odkaz:
https://doaj.org/article/1576841eca7044bca66668092cbe5a84
Publikováno v:
Mathematics, Vol 10, Iss 6, p 964 (2022)
In this paper, we studied the Hyers–Ulam–Rassias stability of Hermite’s differential equation, using Pachpatte’s inequality. We compared our results with those obtained by Blaga et al. Our estimation for zx−yx, where z is an approximate sol
Externí odkaz:
https://doaj.org/article/0910f55a9d644095865617219fc0870d
Publikováno v:
Mathematics, Vol 9, Iss 24, p 3320 (2021)
In this paper we study Hyers-Ulam stability of Euler’s equation in the calculus of variations in two special cases: when F=F(x,y′) and when F=F(y,y′). For the first case we use the direct method and for the second case we use the Laplace transf
Externí odkaz:
https://doaj.org/article/5db1685166f94f31bb64b6663165a914
Publikováno v:
Symmetry, Vol 13, Iss 8, p 1321 (2021)
In this paper, we establish some results for a Volterra–Hammerstein integral equation with modified arguments: existence and uniqueness, integral inequalities, monotony and Ulam-Hyers-Rassias stability. We emphasize that many problems from the doma
Externí odkaz:
https://doaj.org/article/b7dd963d6f254e5ca74692f402b3125e
Publikováno v:
Symmetry, Vol 12, Iss 10, p 1728 (2020)
In this paper, we study some optimal inequalities of the Riccati type and of the Bihari type. We also consider nonoptimal inequalities of the Wendorf type. At the same time, we get a partial answer to Problems 5 and 9, formulated by I. A. Rus. This p
Externí odkaz:
https://doaj.org/article/5c829d9534a54094ae945ca093ef714b
Publikováno v:
Symmetry, Vol 12, Iss 7, p 1060 (2020)
The aim of this paper is to investigate generalized Ulam–Hyers stability and generalized Ulam–Hyers–Rassias stability for a system of partial differential equations of first order. More precisely, we consider a system of two nonlinear equations
Externí odkaz:
https://doaj.org/article/9b58be4d6400403298fbd0f09cb14168
Autor:
Nicolaie Lungu
Publikováno v:
Journal of Numerical Analysis and Approximation Theory, Vol 25, Iss 1 (1996)
Not available.
Externí odkaz:
https://doaj.org/article/c89dc843fc80439ab5a26c750f5d64af
Autor:
Nicolaie Lungu
Publikováno v:
Journal of Numerical Analysis and Approximation Theory, Vol 17, Iss 1 (1988)
Not available.
Externí odkaz:
https://doaj.org/article/5b1ad1bd22524a669adbf2c3b4dd2e26
Publikováno v:
Aequationes mathematicae.
In this paper we will study Hyers-Ulam stability for a general linear partial differential equation of first order in a Banach space.