Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Nicola Kistler"'
Autor:
Christof, Külske, Aernout C. D. van, Enter, Louis-Pierre, Arguin, Roberto, Persechino, Erwin, Bolthausen, Jiri, Cerny, Gayrard-Troy, Véronique, Lisa, Hartung, Francesco, Guerra, Goetz, Kersting, Nicola, Kistler, Adrien, Schertzer, Marius A., Schmidt, Lily Z., Wang, Reza, Gheissari, Charles M., Newman, Daniel L., Stein, Pietro, Caputo, Dmitry, Ioffe, Vitali, Wachtel, Alessandra, Faggionato, Gayrard, Véronique
Publikováno v:
Véronique Gayrard, Louis-Pierre Arguin, Nicola Kistler, Irina Kourkova. Springer Nature, https://link.springer.com/book/10.1007/978-3-030-29077-1 (293), 2019, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-3-030-29077-1⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1642d0505779b3baf49406ed33dc6750
https://hal.science/hal-02379251
https://hal.science/hal-02379251
We study the total mass of high points in a random model for the Riemann-Zeta function. We consider the same model as in [8], [2], and build on the convergence to 'Gaussian' multiplicative chaos proved in [14]. We show that the total mass of points w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3a575f92f8b20664098465f306492d8
http://arxiv.org/abs/1906.08573
http://arxiv.org/abs/1906.08573
Publikováno v:
Statistical Mechanics of Classical and Disordered Systems ISBN: 9783030290764
We sketch a new framework for the analysis of disordered systems, in particular mean field spin glasses, which is variational in nature and within the formalism of classical thermodynamics. For concreteness, only the Sherrington–Kirkpatrick model i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bb66c1a6eda2e9947b933359ec33b607
https://doi.org/10.1007/978-3-030-29077-1_8
https://doi.org/10.1007/978-3-030-29077-1_8
These proceedings of the conference Advances in Statistical Mechanics, held in Marseille, France, August 2018, focus on fundamental issues of equilibrium and non-equilibrium dynamics for classical mechanical systems, as well as on open problems i
Autor:
David Belius, Nicola Kistler
We reinterpret the Thouless–Anderson–Palmer approach to mean field spin glass models as a variational principle in the spirit of the Gibbs variational principle and the Bragg–Williams approximation. We prove this TAP–Plefka variational princi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d0dde8ef452198ee3336f3863e68b684
http://arxiv.org/abs/1802.05782
http://arxiv.org/abs/1802.05782
Publikováno v:
Electron. Commun. Probab.
It has been proved by Bovier & Hartung [Elect. J. Probab. 19 (2014)] that the maximum of a variable-speed branching Brownian motion (BBM) in the weak correlation regime converges to a randomly shifted Gumbel distribution. The random shift is given by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52eb720107b475677e00f30f84ef07e1
https://projecteuclid.org/euclid.ecp/1542942175
https://projecteuclid.org/euclid.ecp/1542942175
Publikováno v:
Ann. Appl. Probab. 30, no. 2 (2020), 788-811
This is the second, and last paper in which we address the behavior of oriented first passage percolation on the hypercube in the limit of large dimensions. We prove here that the extremal process converges to a Cox process with exponential intensity
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::060d89d5cb1c42db3fe8d0889644e6a6
Autor:
Véronique Gayrard, Nicola Kistler
This volume presents five different methods recently developed to tackle the large scale behavior of highly correlated random systems, such as spin glasses, random polymers, local times and loop soups and random matrices. These methods, presented
Publikováno v:
Probability Theory and Related Fields. 157:535-574
We prove that the extremal process of branching Brownian motion, in the limit of large times, converges weakly to a cluster point process. The limiting process is a (randomly shifted) Poisson cluster process, where the positions of the clusters is a
Publikováno v:
Communications on Pure and Applied Mathematics. 64:1647-1676
Branching Brownian motion describes a system of particles that diffuse in space and split into offspring according to a certain random mechanism. By virtue of the groundbreaking work by M. Bramson on the convergence of solutions of the Fisher-KPP equ