Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Nicola Abatangelo"'
Autor:
Nicola Abatangelo, Eugenio Vecchi
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 14, Iss 1, Pp i-iv (2023)
Nonlinear PDEs is one of the traditional topics developed by the Italian school of Analysis since its early days. These have recently met with the theory of nonlocal operators, which has been a trending topic in the international community in the pas
Externí odkaz:
https://doaj.org/article/3e8495111e3f4e00adac5e86de88966e
Autor:
Nicola Abatangelo
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 12, Iss 1, Pp 53-80 (2022)
We summarize some of the most recent results regarding the theory of higher-order fractional Laplacians, i.e., the operators obtained by considering (non-integer) powers greater than 1 of the Laplace operator. These can also be viewed as the nonlocal
Externí odkaz:
https://doaj.org/article/900f9d67ce8c44ad8d3ed2ac5e9ed0fa
Publikováno v:
Mathematics in Engineering, Vol 3, Iss 5, Pp 1-34 (2021)
We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians~$\Ds$ of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of~$s$-harmonic
Externí odkaz:
https://doaj.org/article/79f12c018e2843b3ab078b3f68d339be
Autor:
Nicola Abatangelo
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 12, Iss 1, Pp 53-80 (2022)
We summarize some of the most recent results regarding the theory of higher-order fractional Laplacians, i.e., the operators obtained by considering (non-integer) powers greater than 1 of the Laplace operator. These can also be viewed as the nonlocal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3fb7fac31073ad194d651b6605063f8a
http://hdl.handle.net/11585/862301
http://hdl.handle.net/11585/862301
Publikováno v:
Mathematics in Engineering, Vol 3, Iss 5, Pp 1-34 (2021)
We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of $s$-harmonic functi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::11d09ae6951432cd1a46b3b661e8ce8b
http://arxiv.org/abs/2005.09514
http://arxiv.org/abs/2005.09514
Autor:
Nicola Abatangelo, Matteo Cozzi
We investigate existence and uniqueness of solutions to second-order elliptic boundary value problems containing a power nonlinearity applied to a fractional Laplacian. We detect the critical power separating the existence from the non-existence regi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3226486e18d767f267d04e223daf385d
http://arxiv.org/abs/2005.09515
http://arxiv.org/abs/2005.09515
Autor:
Nicola Abatangelo
We show how nonlocal boundary conditions of Robin type can be encoded in the pointwise expression of the fractional operator. Notably, the fractional Laplacian of functions satisfying homogeneous nonlocal Neumann conditions can be expressed as a regi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e67f80e40dd78b82c56aedcf1f2cb49a
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/63790
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/63790
Publikováno v:
Nonlinear Analysis. 175:173-190
We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s > 1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems a
Autor:
Nicola Abatangelo, Louis Dupaigne
Publikováno v:
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2016, ⟨10.1016/j.anihpc.2016.02.001⟩
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2016, ⟨10.1016/j.anihpc.2016.02.001⟩
We present a construction of harmonic functions on bounded domains for the spectral fractional Laplacian operator and we classify them in terms of their divergent profile at the boundary. This is used to establish and solve boundary value problems as
Autor:
Enrico Valdinoci, Nicola Abatangelo
Publikováno v:
Contemporary Research in Elliptic PDEs and Related Topics ISBN: 9783030189204
These are the handouts of an undergraduate minicourse at the Universita di Bari (see Fig. 1), in the context of the 2017 INdAM Intensive Period “Contemporary Research in elliptic PDEs and related topics”. Without any intention to serve as a throu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce8637e2e946fd950a5468df6d69734f
http://hdl.handle.net/11585/835030
http://hdl.handle.net/11585/835030