Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Nicat, Aliyev"'
Publikováno v:
SIAM Journal on Matrix Analysis and Applications. 41:928-956
We deal with the minimization of the ${\mathcal H}_\infty$-norm of the transfer function of a parameter-dependent descriptor system over the set of admissible parameter values. Subspace frameworks ...
Autor:
Nicat, Aliyev
A MATLAB code for a subspace algorithm to approximate the structured real stability radius of large-scale standard linear time invariant (LTI) system. The subspace frameworkd is based on an interpolatory model reduction technique. The rate of converg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::12f8d188227b8a063fb62585e7541336
Autor:
Nicat Aliyev
We consider the autonomous dynamical system $x' = Ax$, with $A \in \mathbb{R}^{n\times n}$. This linear dynamical system is said to be asymptotically stable if all of the eigenvalues of A lie in the open left-half of the complex plane. In this case,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b580ad9e16aef5babc0ed1a154f972a
http://arxiv.org/abs/2105.01001
http://arxiv.org/abs/2105.01001
Publikováno v:
Advances in Computational Mathematics
A linear time-invariant dissipative Hamiltonian (DH) system (x) over dot = (J-R)Qx, with a skew-Hermitian J, a Hermitian positive semidefinite R, and a Hermitian positive definite Q, is always Lyapunov stable and under further weak conditions even as
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::06a9cb4d438d7a3ba140efcfb10b9fb1
https://depositonce.tu-berlin.de/handle/11303/12814
https://depositonce.tu-berlin.de/handle/11303/12814
Publikováno v:
SIAM Journal on Matrix Analysis and Applications. 38:1496-1516
We are concerned with the computation of the ${\mathcal L}_\infty$-norm for an ${\mathcal L}_\infty$-function of the form $H(s) = C(s) D(s)^{-1} B(s)$, where the middle factor is the inverse of a meromorphic matrix-valued function, and $C(s),\, B(s)$
Publikováno v:
PAMM. 17:751-752