Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Niazi, Mohsen"'
Autor:
Niazi, Mohsen1, Siadatian, Sayed Hossein2 h.siadatian@gmail.com, Arani, Fatemeh Khoshbayani1, Farhadian, Ali3
Publikováno v:
Aging Psychology. Aug2023, Vol. 9 Issue 2, p135-150. 16p.
Autor:
Niazi, Mohsen, Peralta, Antonio M.
We prove that, for every separable complex Hilbert space $H$, every weak-2-local $^*$-derivation on $B(H)$ is a linear $^*$-derivation. We also establish that every (non-necessarily linear nor continuous) weak-2-local derivation on a finite dimension
Externí odkaz:
http://arxiv.org/abs/1505.00770
Autor:
Niazi, Mohsen, Peralta, Antonio M.
We introduce the notion of weak-2-local derivation (respectively, $^*$-derivation) on a C$^*$-algebra $A$ as a (non-necessarily linear) map $\Delta : A\to A$ satisfying that for every $a,b\in A$ and $\phi\in A^*$ there exists a derivation (respective
Externí odkaz:
http://arxiv.org/abs/1503.01346
Publikováno v:
Journal of Applied Sociology (1735-000X); Summer2024, Vol. 35 Issue 2, p69-100, 32p
Publikováno v:
Journal of Adolescent & Youth Psychological Studies; 2024, Vol. 5 Issue 5, p68-78, 11p
Autor:
Jain, Sreepat, Niazi, Mohsen, Abdelhady, Ahmed Awad, Vahidinia, Mohammad, Hossein, Mahmoudi Gharaie Mohammad
Publikováno v:
In Palaeogeography, Palaeoclimatology, Palaeoecology 15 September 2020 554
We prove that, for a complex Hilbert space $H$ with dimension bigger or equal than three, every linear mapping $T: B(H)\to B(H)$ satisfying the 3-local property is a $^*$-monomorphism, that is, every linear mapping $T: B(H) \to B(H)$ satisfying that
Externí odkaz:
http://arxiv.org/abs/1412.1918
Publikováno v:
In Personality and Individual Differences 1 March 2019 139:96-101
Autor:
Niazi, Mohsen, Peralta, Antonio M.
Publikováno v:
Filomat, 2017 Jan 01. 31(6), 1687-1708.
Externí odkaz:
https://www.jstor.org/stable/24902262
Autor:
Niazi, Mohsen, Peralta, Antonio M.
Publikováno v:
In Linear Algebra and Its Applications 15 December 2015 487:276-300