Zobrazeno 1 - 10
of 276
pro vyhledávání: '"Nguyen, Hien D"'
Autor:
Nguyen, Hien D, Gupta, Mayetri
In recent years, empirical Bayesian (EB) inference has become an attractive approach for estimation in parametric models arising in a variety of real-life problems, especially in complex and high-dimensional scientific applications. However, compared
Externí odkaz:
http://arxiv.org/abs/2302.14531
In this paper, an ontology-based approach is used to organize the knowledge base of legal documents in road traffic law. This knowledge model is built by the improvement of ontology Rela-model. In addition, several searching problems on traffic law a
Externí odkaz:
http://arxiv.org/abs/2301.11252
Maximum composite likelihood estimation is a useful alternative to maximum likelihood estimation when data arise from data generating processes (DGPs) that do not admit tractable joint specification. We demonstrate that generic composite likelihoods
Externí odkaz:
http://arxiv.org/abs/2106.14399
The determination of the number of mixture components (the order) of a finite mixture model has been an enduring problem in statistical inference. We prove that the closed testing principle leads to a sequential testing procedure (STP) that allows fo
Externí odkaz:
http://arxiv.org/abs/2103.10640
We investigate the estimation properties of the mixture of experts (MoE) model in a high-dimensional setting, where the number of predictors is much larger than the sample size, and for which the literature is particularly lacking in theoretical resu
Externí odkaz:
http://arxiv.org/abs/2009.10622
Approximation of probability density functions via location-scale finite mixtures in Lebesgue spaces
The class of location-scale finite mixtures is of enduring interest both from applied and theoretical perspectives of probability and statistics. We prove the following results: to an arbitrary degree of accuracy, (a) location-scale mixtures of a con
Externí odkaz:
http://arxiv.org/abs/2008.09787
Autor:
Nguyen, Hien D, Fryer, Daniel V
The soft-margin support vector machine (SVM) is a ubiquitous tool for prediction of binary-response data. However, the SVM is characterized entirely via a numerical optimization problem, rather than a probability model, and thus does not directly gen
Externí odkaz:
http://arxiv.org/abs/2007.11902
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Mixtures-of-Experts models and their maximum likelihood estimation (MLE) via the EM algorithm have been thoroughly studied in the statistics and machine learning literature. They are subject of a growing investigation in the context of modeling with
Externí odkaz:
http://arxiv.org/abs/1909.05494