Zobrazeno 1 - 10
of 172
pro vyhledávání: '"Ngo Quoc Anh"'
Autor:
Hyder, Ali, Ngô, Quôc Anh
Publikováno v:
Mathematische Annalen 389 (2024), pp. 2519-2560
This work concerns a Liouville type result for positive, smooth solution $v$ to the following higher-order equation \[ {\mathbf P}^{2m}_n (v) = \frac{n-2m}2 Q_n^{2m} (\varepsilon v+v^{-\alpha} ) \] on $\mathbb S^n$ with $m \geq 2$, $3 \leq n < 2m $,
Externí odkaz:
http://arxiv.org/abs/2307.05401
Let $n$ be an integer and $s$ be a real number such that $n > 2s \geq 2$. Inspired by the perturbation approach initiated by F. Hang and P. Yang (\textit{Int. Math. Res. Not. IMRN}, 2020), we are interested in non-negative, smooth solution $v$ to the
Externí odkaz:
http://arxiv.org/abs/2305.07249
Autor:
Giga, Yoshikazu, Ngô, Quôc Anh
Publikováno v:
Partial Differential Equations and Applications 3 (2022) Art. 81
This paper concerns solutions to the Hardy-H\'enon equation \[ -\Delta u = |x|^\sigma u^p \] in $\mathbf R ^n$ with $n \geq 1$ and arbitrary $p, \sigma \in \mathbf R$. This equation was proposed by H\'enon in 1973 as a model to study rotating stellar
Externí odkaz:
http://arxiv.org/abs/2201.08159
Autor:
Ngô, Quôc Anh
The famous Stein-Weiss inequality on $\mathbf R^n \times \mathbf R^n$, also known as the doubly weighted Hardy-Littlewood-Sobolev inequality, asserts that \[ \Big| \iint_{\mathbf R^n \times \mathbf R^n} \frac{f(x) g(y)}{|x|^\alpha |x-y|^\lambda |y|^\
Externí odkaz:
http://arxiv.org/abs/2110.14220
Publikováno v:
In Journal of Differential Equations 15 July 2024 397:55-79
Using the prescribed Webster scalar curvature flow, we prove some existence results on the 3-dimensional compact CR manifold with nonnegative CR Yamabe constant.
Externí odkaz:
http://arxiv.org/abs/2105.00170
For $n > k \geq 0$, $\lambda >0$, and $p, r>1$, we establish the following optimal Hardy-Littlewood-Sobolev inequality \[ \Big| \iint_{\mathbf R^n \times \mathbf R^{n-k}} \frac{f(x) g(y)}{ |x-y|^\lambda |y"|^\beta} dx dy \Big| \lesssim \| f \| _{L^p(
Externí odkaz:
http://arxiv.org/abs/2009.09868
Autor:
Ngô, Quôc Anh, Ye, Dong
Publikováno v:
Journal de Math\'ematiques Pures et Appliqu\'ees 163 (2022), pp. 265-298
This paper is devoted to studies of non-negative, non-trivial (classical, punctured, or distributional) solutions to the higher order Hardy-H\'enon equations \[ (-\Delta)^m u = |x|^\sigma u^p \] in $\mathbf R^n$ with $p > 1$. We show that the conditi
Externí odkaz:
http://arxiv.org/abs/2007.09652
Autor:
Do, Cam Van T., Lam, Van Toan, Nguyen, Phuong Dung T., Tran, Dang Thuan, Ngo, Quoc Anh, Le, Truong Giang
Publikováno v:
In Biochemical Engineering Journal August 2023 197
Autor:
Ngô, Quôc Anh, Nguyen, Van Hoang
Publikováno v:
Journal of Differential Equations 268 (2020) 5996-6032
A Sobolev type embedding for radially symmetric functions on the unit ball $B$ in $\mathbb R^n$, $n\geq 3$, into the variable exponent Lebesgue space $L_{2^\star + |x|^\alpha} (B)$, $2^\star = 2n/(n-2)$, $\alpha>0$, is known due to J.M. do \'O, B. Ru
Externí odkaz:
http://arxiv.org/abs/1905.01864