Zobrazeno 1 - 10
of 107
pro vyhledávání: '"Ngaiming Mok"'
Autor:
Ngaiming Mok, Sui-Chung Ng
For the study of the Mordell-Weil group of an elliptic curve ${\bf E}$ over a complex function field of a projective curve $B$, the first author introduced the use of differential-geometric methods arising from K\"ahler metrics on $\mathcal H \times
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::789532a647935e9191457b46c7dee308
http://arxiv.org/abs/2206.09405
http://arxiv.org/abs/2206.09405
Autor:
Ngaiming Mok
Publikováno v:
Science China Mathematics. 62:2335-2354
Recently, Mok and Zhang (2019) introduced the notion of admissible pairs (X0, X) of rational homogeneous spaces of Picard number 1 and proved rigidity of admissible pairs (X0, X) of the subdiagram type whenever X0 is nonlinear. It remains unsolved wh
Autor:
Ngaiming Mok
Publikováno v:
Compositio Mathematica. 155:2129-2149
We prove the analogue of the Ax–Lindemann–Weierstrass theorem for not necessarily arithmetic lattices of the automorphism group of the complex unit ball $\mathbb{B}^{n}$ using methods of several complex variables, algebraic geometry and Kähler g
Autor:
Duong H Phong, Yum-Tong Siu, Robert Bryant, Albert Chau, Elisha Falbel, Charles Fefferman, Robert Friedman, John Morgan, Akito Futaki, Phillip Griffiths, Joseph J Kohn, Ngaiming Mok, Shigefumi Mori, Makoto Namba, Junjiro Noguchi, Takeo Ohsawa, Mikio Sato, Shing-Tung Yau
Publikováno v:
Notices of the American Mathematical Society. 69:1
Autor:
Ngaiming Mok, Jaehyun Hong
Publikováno v:
Selecta Mathematica. 26
Given a rational homogeneous manifold S=G/P of Picard number one and a Schubert variety S0 of S, the pair (S,S0) is said to be homologically rigid if any subvariety of S having the same homology class as S0 must be a translate of S0 by the automorphi
Autor:
Ngaiming Mok
Publikováno v:
Local and Global Methods in Algebraic Geometry. :261-285
Autor:
Yunxin Zhang, Ngaiming Mok
Publikováno v:
J. Differential Geom. 112, no. 2 (2019), 263-345
Building on the geometric theory of uniruled projective manifolds by Hwang–Mok, which relies on the study of varieties of minimal rational tangents (VMRTs) from both the algebro-geometric and the differential-geometric perspectives, Mok, Hong–Mok
Publikováno v:
Annals of Mathematics. 189
We prove the Ax-Schanuel theorem for a general (pure) Shimura variety. A basic version of the theorem concerns the transcendence of the uniformization map from a bounded Hermitian symmetric space to a Shimura variety. We then prove a version of the t
Autor:
Ngaiming Mok, Shan Tai Chan
Publikováno v:
Mathematische Zeitschrift. 286:679-700
We study general properties of images of holomorphic isometric embeddings of complex unit balls \({\mathbb {B}}^m\) into irreducible bounded symmetric domains \({\varOmega }\) of rank at least 2. In particular, we show that such holomorphic isometrie