Zobrazeno 1 - 10
of 2 282
pro vyhledávání: '"Ngadiuba Jennifer"'
Autor:
Wang, Aaron, Gandrakota, Abhijith, Ngadiuba, Jennifer, Sahu, Vivekanand, Bhatnagar, Priyansh, Khoda, Elham E, Duarte, Javier
Machine learning (ML) algorithms, particularly attention-based transformer models, have become indispensable for analyzing the vast data generated by particle physics experiments like ATLAS and CMS at the CERN LHC. Particle Transformer (ParT), a stat
Externí odkaz:
http://arxiv.org/abs/2412.03673
Autor:
Baldi, Tommaso, Campos, Javier, Hawks, Ben, Ngadiuba, Jennifer, Tran, Nhan, Diaz, Daniel, Duarte, Javier, Kastner, Ryan, Meza, Andres, Quinnan, Melissa, Weng, Olivia, Geniesse, Caleb, Gholami, Amir, Mahoney, Michael W., Loncar, Vladimir, Harris, Philip, Agar, Joshua, Qin, Shuyu
Extreme data rate scientific experiments create massive amounts of data that require efficient ML edge processing. This leads to unique validation challenges for VLSI implementations of ML algorithms: enabling bit-accurate functional simulations for
Externí odkaz:
http://arxiv.org/abs/2406.19522
Model size and inference speed at deployment time, are major challenges in many deep learning applications. A promising strategy to overcome these challenges is quantization. However, a straightforward uniform quantization to very low precision can r
Externí odkaz:
http://arxiv.org/abs/2405.00645
Autor:
Odagiu, Patrick, Que, Zhiqiang, Duarte, Javier, Haller, Johannes, Kasieczka, Gregor, Lobanov, Artur, Loncar, Vladimir, Luk, Wayne, Ngadiuba, Jennifer, Pierini, Maurizio, Rincke, Philipp, Seksaria, Arpita, Summers, Sioni, Sznajder, Andre, Tapper, Alexander, Aarrestad, Thea K.
Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the inpu
Externí odkaz:
http://arxiv.org/abs/2402.01876
The challenging environment of real-time data processing systems at the Large Hadron Collider (LHC) strictly limits the computational complexity of algorithms that can be deployed. For deep learning models, this implies that only models with low comp
Externí odkaz:
http://arxiv.org/abs/2311.14160
Autor:
Ghielmetti, Nicolò, Loncar, Vladimir, Pierini, Maurizio, Roed, Marcel, Summers, Sioni, Aarrestad, Thea, Petersson, Christoffer, Linander, Hampus, Ngadiuba, Jennifer, Lin, Kelvin, Harris, Philip
In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators for real-time semantic segmentation tasks relevant for autonomous driving. Considering compressed versions of the ENet convolutional neural network ar
Externí odkaz:
http://arxiv.org/abs/2205.07690
Autor:
Harris, Philip, Katsavounidis, Erik, McCormack, William Patrick, Rankin, Dylan, Feng, Yongbin, Gandrakota, Abhijith, Herwig, Christian, Holzman, Burt, Pedro, Kevin, Tran, Nhan, Yang, Tingjun, Ngadiuba, Jennifer, Coughlin, Michael, Hauck, Scott, Hsu, Shih-Chieh, Khoda, Elham E, Chen, Deming, Neubauer, Mark, Duarte, Javier, Karagiorgi, Georgia, Liu, Mia
Machine learning (ML) is becoming an increasingly important component of cutting-edge physics research, but its computational requirements present significant challenges. In this white paper, we discuss the needs of the physics community regarding ML
Externí odkaz:
http://arxiv.org/abs/2203.16255
Autor:
Pol, Adrian Alan, Aarrestad, Thea, Govorkova, Ekaterina, Halily, Roi, Klempner, Anat, Kopetz, Tal, Loncar, Vladimir, Ngadiuba, Jennifer, Pierini, Maurizio, Sirkin, Olya, Summers, Sioni
We apply object detection techniques based on deep convolutional blocks to end-to-end jet identification and reconstruction tasks encountered at the CERN Large Hadron Collider (LHC). Collision events produced at the LHC and represented as an image co
Externí odkaz:
http://arxiv.org/abs/2202.04499
Autor:
Deiana, Allison McCarn, Tran, Nhan, Agar, Joshua, Blott, Michaela, Di Guglielmo, Giuseppe, Duarte, Javier, Harris, Philip, Hauck, Scott, Liu, Mia, Neubauer, Mark S., Ngadiuba, Jennifer, Ogrenci-Memik, Seda, Pierini, Maurizio, Aarrestad, Thea, Bahr, Steffen, Becker, Jurgen, Berthold, Anne-Sophie, Bonventre, Richard J., Bravo, Tomas E. Muller, Diefenthaler, Markus, Dong, Zhen, Fritzsche, Nick, Gholami, Amir, Govorkova, Ekaterina, Hazelwood, Kyle J, Herwig, Christian, Khan, Babar, Kim, Sehoon, Klijnsma, Thomas, Liu, Yaling, Lo, Kin Ho, Nguyen, Tri, Pezzullo, Gianantonio, Rasoulinezhad, Seyedramin, Rivera, Ryan A., Scholberg, Kate, Selig, Justin, Sen, Sougata, Strukov, Dmitri, Tang, William, Thais, Savannah, Unger, Kai Lukas, Vilalta, Ricardo, Krosigk, Belinavon, Warburton, Thomas K., Flechas, Maria Acosta, Aportela, Anthony, Calvet, Thomas, Cristella, Leonardo, Diaz, Daniel, Doglioni, Caterina, Galati, Maria Domenica, Khoda, Elham E, Fahim, Farah, Giri, Davide, Hawks, Benjamin, Hoang, Duc, Holzman, Burt, Hsu, Shih-Chieh, Jindariani, Sergo, Johnson, Iris, Kansal, Raghav, Kastner, Ryan, Katsavounidis, Erik, Krupa, Jeffrey, Li, Pan, Madireddy, Sandeep, Marx, Ethan, McCormack, Patrick, Meza, Andres, Mitrevski, Jovan, Mohammed, Mohammed Attia, Mokhtar, Farouk, Moreno, Eric, Nagu, Srishti, Narayan, Rohin, Palladino, Noah, Que, Zhiqiang, Park, Sang Eon, Ramamoorthy, Subramanian, Rankin, Dylan, Rothman, Simon, Sharma, Ashish, Summers, Sioni, Vischia, Pietro, Vlimant, Jean-Roch, Weng, Olivia
Publikováno v:
Front. Big Data 5, 787421 (2022)
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery.
Externí odkaz:
http://arxiv.org/abs/2110.13041
Autor:
Jawahar, Pratik, Aarrestad, Thea, Chernyavskaya, Nadezda, Pierini, Maurizio, Wozniak, Kinga A., Ngadiuba, Jennifer, Duarte, Javier, Tsan, Steven
Publikováno v:
Front. Big Data 5, 803685 (2022)
We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show
Externí odkaz:
http://arxiv.org/abs/2110.08508