Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Neural Networks Principal Component Analysis"'
Publikováno v:
Revista Mexicana de Economía y Finanzas Nueva Época REMEF, Vol 16, Iss 0, Pp e697-e697 (2021)
The objective of this paper is to compare four dimension reduction techniques used for extracting the underlying systematic risk factors driving returns on equities of the Mexican Market. The methodology used compares the results of estimation produc
Externí odkaz:
https://doaj.org/article/c3a6109b012848079af0118621b487fe
Publikováno v:
Revista Finanzas y Política Económica, Vol 13, Iss 2 (2021)
This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extra
Externí odkaz:
https://doaj.org/article/f5ca7992a66f4a33870e9400e1b74225
Publikováno v:
Revista Finanzas y Política Económica, Volume: 13, Issue: 2, Pages: 513-543, Published: 12 APR 2022
This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis, and Neural Networks Principal Component Analysis, which are used as techniques for extr
Publikováno v:
Revista Finanzas y Política Económica, Vol 13, Iss 2 (2021)
This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extra
Autor:
Ladrón de Guevara Cortés, Rogelio, Torra Porras, Salvador, Monte Moreno, Enrique|||0000-0002-4907-0494
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis, and Neural Networks Principal Component Analysis, which are used as techniques for extr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::a310b98fa9590f33932a1bfd51991999
https://hdl.handle.net/10983/29450
https://hdl.handle.net/10983/29450
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Klaus L. Leenders, Maria Rodriguez Oroz, Sanne K. Meles, Natasha M. Maurits, Octavio E. Martinez Manzanera, Flavio Nobili, Silvia Morbelli, Dario Arnaldi, Remco J. Renken, Jose A. Obeso, Marco Pagani
Publikováno v:
International Journal of Neural Systems, 29(9):1950010
Over the last years convolutional neural networks (CNNs) have shown remarkable results in different image classification tasks, including medical imaging. One area that has been less explored with CNNs is Positron Emission Tomography (PET). Fluorodeo
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ryman, Shaun K.
The human olfactory system can classify new odors in a dynamic environment with varying odor complexity and concentration, while simultaneously reducing the influence of stable background odors. Replication of this capability has remained an active a
Externí odkaz:
http://hdl.handle.net/1993/31056