Zobrazeno 1 - 10
of 27 370
pro vyhledávání: '"Neumann problem"'
Autor:
Motreanu, Dumitru1 (AUTHOR) motreanu@univ-perp.fr, Sciammetta, Angela2 (AUTHOR) angela.sciammetta@unipa.it
Publikováno v:
Axioms (2075-1680). Aug2024, Vol. 13 Issue 8, p497. 10p.
Autor:
Ma, Li1 (AUTHOR) malihnsd@163.com, Sun, Fangfang1 (AUTHOR), Han, Xinfang1 (AUTHOR) xfanghan@163.com
Publikováno v:
Mathematics (2227-7390). Apr2024, Vol. 12 Issue 7, p1050. 19p.
Autor:
Grebenkov, Denis S.
Many first-passage processes in complex media and related diffusion-controlled reactions can be described by means of eigenfunctions of the mixed Steklov-Neumann problem. In this paper, we investigate this spectral problem in a common setting when a
Externí odkaz:
http://arxiv.org/abs/2409.00213
Autor:
Khanh, Tran Vu, Raich, Andrew
We establish general sufficient conditions for exact (and global) regularity in the $\bar\partial$-Neumann problem on $(p,q)$-forms, $0 \leq p \leq n$ and $1\leq q \leq n$, on a pseudoconvex domain $\Omega$ with smooth boundary $b\Omega$ in an $n$-di
Externí odkaz:
http://arxiv.org/abs/2408.04512
Autor:
Feneuil, Joseph, Li, Linhan
We introduce the $L^p$ Poisson-Neumann problem for an uniformly elliptic operator $L=-\rm{div }A\nabla$ in divergence form in a bounded 1-sided Chord Arc Domain $\Omega$, which considers solutions to $Lu=h-\rm{div}\vec{F}$ in $\Omega$ with zero Neuma
Externí odkaz:
http://arxiv.org/abs/2406.16735
Autor:
Mourgoglou, Mihalis, Tolsa, Xavier
Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded chord-arc domain, let $\mathcal L=-{\rm div} A\nabla$ be an elliptic operator in $\Omega$ associated with a matrix $A$ having Dini mean oscillation coefficients, and let $1
Externí odkaz:
http://arxiv.org/abs/2407.20385
Autor:
de Cristoforis, M. Lanza
We present a nonvariational setting for the Neumann problem for the Poisson equation for solutions that are H\"{o}lder continuous and that may have infinite Dirichlet integral. We introduce a distributional normal derivative on the boundary for the s
Externí odkaz:
http://arxiv.org/abs/2405.01818