Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Neringa Klovienė"'
Autor:
Kristina Kaulakytė, Neringa Klovienė
Publikováno v:
Mathematical Modelling and Analysis, Vol 26, Iss 1, Pp 55-71 (2021)
The nonhomogeneous boundary value problem for the stationary NavierStokes equations in 2D symmetric multiply connected domain with a cusp point on the boundary is studied. It is assumed that there is a source or sink in the cusp point. A symmetric so
Externí odkaz:
https://doaj.org/article/6ba0f7d2d2254bf3b589ca477d796187
Autor:
Neringa Klovienė
Publikováno v:
Nonlinear Analysis, Vol 17, Iss 3 (2012)
Third order initial boundary value problem is studied in a bounded plane domain σ with C4 smooth boundary ∂σ. The existence and uniqueness of the solution is proved using Galerkin approximations and a priory estimates. The problem under considera
Externí odkaz:
https://doaj.org/article/6980d63a6ce44414b21789a3e3f30349
Autor:
Neringa Klovienė
Publikováno v:
Lietuvos Matematikos Rinkinys, Vol 50, Iss proc. LMS (2009)
Time periodic Poiseuille type solutions are studied for equations of the non-Newtonian second grade fluid in the two dimensional infinite strip. We prove the existence and uniqueness of the solution. Moreover, we obtain estimates of the solution in S
Externí odkaz:
https://doaj.org/article/3b1f873375704c818ee107db29ae67c1
Publikováno v:
Lithuanian Mathematical Journal. 57:183-195
We prove the existence of a unique Poiseuille-type solution to the time almost-periodic (in Stepanov sense) Stokes problem in an infinite spatially periodic pipe.
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 70
The nonhomogeneous boundary value problem for the stationary Navier–Stokes equations in a two-dimensional domain with a cusp point on the boundary is studied. The case when the flux of the boundary value $$\mathbf{a }$$ is nonzero, i.e., when there
Publikováno v:
Mathematische Nachrichten. 290:546-569
We study linearized, non-stationary Navier–Stokes type equations with the given flux in an infinite pipe periodic of period length L with respect to . The existence and uniqueness of the solution is proved. Moreover, the convergence of the solution
Autor:
Konstantin Pileckas, Neringa Klovienė
Publikováno v:
Asymptotic Analysis. 83:237-262
The non-stationary equations describing the motion of the second grade fluid are studied in an infinite three- dimensional pipe of arbitrary cross-section. For sufficiently small data the existence of the unique Poiseuille type solution having a give
Publikováno v:
Lithuanian Mathematical Journal. 52:155-171
We study solutions to the nonstationary equations describing the motion of the second-grade fluid in a twodimensional infinite channel and in a three-dimensional rotationally symmetric pipe. We prove the existence of a unique Poiseuille-type solution
Autor:
Neringa Klovienė
Publikováno v:
Lietuvos Matematikos Rinkinys, Vol 50, Iss proc. LMS (2009)
Lietuvos matematikos rinkinys, Vilnius : Vilniaus universiteto leidykla, 2009, t. 50, p. 30-35
Lietuvos matematikos rinkinys, Vilnius : Vilniaus universiteto leidykla, 2009, t. 50, p. 30-35
Time periodic Poiseuille type solutions are studied for equations of the non-Newtonian second grade fluid in the two dimensional infinite strip. We prove the existence and uniqueness of the solution. Moreover, we obtain estimates of the solution in S