Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Neofytidis, Christoforos"'
Autor:
Neofytidis, Christoforos
For each $m\geq0$ and any prime $p\equiv3\ \mathrm{(mod \ 4)}$, we construct strongly chiral rational homology $(4m+3)$-spheres, which have real hyperbolic fundamental groups and only non-zero integral intermediate homology groups isomorphic to $\mat
Externí odkaz:
http://arxiv.org/abs/2411.05604
Publikováno v:
Proc. Amer. Math. Soc. 152 (2024), 1769--1776
The set of degrees of maps $D(M,N)$, where $M,N$ are closed oriented $n$-manifolds, always contains $0$ and the set of degrees of self-maps $D(M)$ always contains $0$ and $1$. Also, if $a,b\in D(M)$, then $ab\in D(M)$; a set $A\subseteq\mathbb Z$ so
Externí odkaz:
http://arxiv.org/abs/2303.11922
Autor:
Neofytidis, Christoforos
We show that if a closed oriented $n$-manifold $M$ has a non-trivial cohomology class of even degree $k$, whose all pullbacks to products of type $S^1\times N$ vanish, then the topological complexity $\mathrm{TC}(M)$ is at least $6$, if $n$ is odd, a
Externí odkaz:
http://arxiv.org/abs/2212.08962
Autor:
Neofytidis, Christoforos
Following Thurston's geometrisation picture in dimension three, we study geometric manifolds in a more general setting in arbitrary dimensions, with respect to the following problems: (i) The existence of maps of non-zero degree (domination relation
Externí odkaz:
http://arxiv.org/abs/2211.06803
Publikováno v:
Bull. Lond. Math. Soc. 55 (2023), 1700--1717
Given two closed oriented manifolds $M,N$ of the same dimension, we denote the set of degrees of maps from $M$ to $N$ by $D(M,N)$. The set $D(M,N)$ always contains zero. We show the following (non-)realisability results: (i) There exists an infinite
Externí odkaz:
http://arxiv.org/abs/2109.13790
Autor:
Neofytidis, Christoforos
We classify in terms of Hopf-type properties mapping tori of residually finite Poincar\'e Duality groups with non-zero Euler characteristic. This generalises and gives a new proof of the analogous classification for fibered 3-manifolds. Various appli
Externí odkaz:
http://arxiv.org/abs/2010.12490
Autor:
Neofytidis, Christoforos, Zhang, Weiyi
Publikováno v:
Pacific J. Math. 315 (2021), 209--233
We introduce an axiomatic definition for the Kodaira dimension and classify Thurston geometries in dimensions $\leq 5$ in terms of this Kodaira dimension. We show that the Kodaira dimension is monotone with respect to the partial order defined by map
Externí odkaz:
http://arxiv.org/abs/2008.00592
Autor:
Neofytidis, Christoforos
Publikováno v:
Geom. Dedicata 213 (2021), 325--337
A long-standing conjecture asserts that any Anosov diffeomorphism of a closed manifold is finitely covered by a diffeomorphism which is topologically conjugate to a hyperbolic automorphism of a nilpotent manifold. In this paper, we show that any clos
Externí odkaz:
http://arxiv.org/abs/1912.01583
Publikováno v:
Math. Ann. 376 (2020), 1429--1447
We prove that any mapping torus of a closed 3-manifold has zero simplicial volume. When the fiber is a prime 3-manifold, classification results can be applied to show vanishing of the simplicial volume, however the case of reducible fibers is by far
Externí odkaz:
http://arxiv.org/abs/1812.10726